最新レスポンシブHTMLテンプレート no.002 サンプルロゴ

Contact
RESEARCH

Phase-field modeling in materials science

Data Assimilation methods for phase-field modeling (フェーズフィールドモデルのデータ同化)

  • Efficient estimation of material parameters using data assimilation and Bayesian optimization: Application to phase-field simulation of solid-state sintering
    (データ同化とベイズ最適化を組み合わせた効率的な材料パラメータ同定法:固相焼結フェーズフィールドシミュレーションへの応用)
    Materials Today Communications, (2021/12), Accepted.
  •    
  • Data assimilation for quantitative phase-field model of alloy solidification using local ensemble transform Kalman filter
    (局所アンサンブル変換カルマンフィルタを用いた合金凝固の定量的フェーズフィールドモデルのデータ同化)
    Computational Materials Science, Vol. 190, (2021/04), 110296.

  • Data assimilation for three-dimensional phase-field model of alloy solidification using local ensemble transform Kalman filter
    (局所アンサンブル変換カルマンフィルタを用いた合金凝固の3次元フェーズフィールドモデルのデータ同化)
    Materials Today Communications, Vol. 25 (2020/12), 101331.

  • Parameter estimation for three-dimensional multi-phase-field model of grain growth using ensemble Kalman filter
    (アンサンブルカルマンフィルタを用いた結晶粒成長の3次元マルチフェーズフィールドモデルのパラメータ推定)
    Materials & Design, (2019/3), Vol. 165, p. 107577.

  • Parameter estimation for phase-field model of austenite-to-ferrite transformation using ensemble Kalman filter
    (アンサンブルカルマンフィルタを用いたオーステナイト→フェライト変態のフェーズフィールドモデルのパラメータ推定)
    Computational Materials Science, Vol. 141, (2018/01), pp. 141-152.

  • Data assimilation for phase-field model of solidification in pure material using 2nd-order adjoint method (Collaboration work)
    (2ndオーダーアジョイント法を用いた純物質凝固のフェーズフィールドモデルのデータ同化)
    Physical Review E, 94, (2016/10), 043307.

  • Review article (in Japanese)
    データ同化との融合によるフェーズフィールド法の進展
    軽金属, Vol. 69 (2019/12), pp. 591-601.
  • Phase-field crystal modeling

  • Grain boundary migration and grain rotation
    Acta Materialia, Vol. 133, (2017/07), pp.160-171.
  • Solid state phase transformations in steels

  • Cyclic austenite-to-ferrite transformation in Fe-C-Mn-Si alloy
    Computational Materials Science, Vol. 136, (2017/08), pp. 67-75.

  • Austenite-to-ferrite transformation in Fe-C-Mn alloy coupled with CALPHAD database
    Journal of Crystal Growth, Vol. 468, (2017/6), pp. 63-67.

  • Stagnation of asutenite-to-ferrite transformation in Fe-C-Mn alloy
    Metallurgical and Materials Transactions A, (2018/07), in print,

  • Dynamic austenite-to-ferrite transformation
    ISIJ International, 54, (2014/12), pp.2917-2925.

  • Austenite-to-ferrite transformation in deformed-austenite phase
    ISIJ International, Vol.52, No.4, (2012/4), pp.659-668.

  • Austenite-to-ferrite transformation in Fe-C alloy
    Journal of Crystal Growth, (2008/4), Vol 310, pp 1337-1342.

  • Formation of Widmanstatten ferrite in Fe-C alloy
    Material Transactions, (2006/11), Vol.47, No.11, pp.2725-2731

  • Martensitic transformation with plastic accommodation
    Materials Science and Engineering A, (2008/7), Vol.491, pp.378-384.
    International Jornal of Mechanical Sciences, (2010/2), Vol.52, pp.245-250.
  • Electrochemistory

  • Corrosion in pure iron based on Bockris mechanism (pH-dependent corrosion)
    Scientific Reports, Vol. 8 (2018/08), 12777.

  • Electromigration
    Computational Materials Science, Vol. 184 (2020/6), 109848.

  • Crystal plasticity finite element method

    Numerical material test

  • Numerical biaxial tensile test of aluminum alloy sheet
    (結晶塑性有限要素法を用いたアルミニウム合金板の数値材料試験:A5182-Oアルミニウム合金板材への適用)
    軽金属, 第65巻, 第11号, (2015/11), pp. 561-567.
    軽金属, 第65巻, 第5号, (2015/6), pp. 196-203.
    Journal of Physics: Conference Series (Proceedings of NUMISHEET2016), Vol. 734 (2016), p. 032005.

  • Machine learning (Deep learning)

  • Estimation of uniaxial stress-strain curve and Lankford value of aluminum alloy sheet
    (深層学習と結晶塑性有限要素法を用いたアルミニウム合金板の単軸応力ーひずみ曲線とランクフォード値の推定)
    塑性と加工, 61巻, 709号, (2020/2), pp. 48-55.
    Journal of the Japan Society for Technology of Plasticity, Vol. 61, No. 709 (2020/2), pp. 48-55. (in Japanese)
    Materials Transactions, Vol. 61 (2020/12), pp. 2276-2283.

  • Estimation of biaxial stress-strain curve of aluminum alloy sheet using deep neural network
    (深層学習と結晶塑性有限要素法を用いたアルミニウム合金板の二軸応力ーひずみ曲線の推定)
    Materials & Design, Vol. 195 (2020/10), 108970. (data is available from GitHub)

  • ページトップへ戻る