東京農工大学 森研究室

Publications

東京農工大学 森研究室

〒184-8588
東京都小金井市中町2-24-16

[ 電話 ]
042-388-7034
[ メール ]

Publications

  1. Lewis acid-catalyzed formal 1,3-aminomethyl migration, Shibata, S.; Amano, K.; Kojima, T. Mori, K. Chem. Commun., 2023, 59, 9976–9979.
  2. Diarylmethylamine (“Butterfly”-type amine) unit: a useful unit for the modulation of catalytic activity of aminothiourea catalysts, Ogawa, H.; Okawa, H.; Mori, K. Synlett, 2023, 1899–1904.
  3. Hydride Shift Mediated C(sp3)-H Bond Functionalization (Internal Redox Reaction), Mori, K. Akiyama, T. J. Synth. Org. Chem., 2023, 81, 582­–593.
  4. Direct access to 9/6-fused cycles via sequential hydride shift mediated double C(sp3)–H bond functionalization, Nakamura, I.; Anada, M.; Sueki, S.; Makino, K.; Mori, K. Adv. Synth. Catal., 2023, 365, 502–507.
  5. Hydride shift mediated C(sp3)–H bond functionalization starting from non-aniline/phenol type substrates: evolution into a sequential system, Mori, K.; Okawa, H. Tetrahedron Lett., 2022, 110, 154178.
  6. Access to ortho-Hydroxyphenyl Ketimines via Imine Anion-mediated Smiles Rearrangement, Jinno, S.; Senoo, T.; Mori, K. Org. Lett., 2022, 24, 4140­–4144.
  7. “Stacked-arene”-type organocatalysts: utilization of pi-pi interaction as an electron tuning tool, Yamamoto, Y.; Inoue, A.; Sakai, D.; Ootawa, Y.; Mori, K. Tetrahedron Lett., 2022, 84, 153921.
  8. Catalytic Manesium-Oppenauer oxidation reaction, Sasaki, Y.; Yokoo, K.; Mori, K. Chem. Lett., 2022, 51, 841­–844.
  9. Synthesis of C3-Symmetric Macrocyclic Triimines from Monomers having Boc-Protected Amine and Formyl Group, Moriya, Y.; Yamanaka, M.; Mori, K. Chem. Lett.,2022, 51, 217­–220.
  10. C(sp3)–H Bond Functionalization Mediated by Hydride Shift/Cyclization System (Award account), Mori, K. Bull. Chem. Soc. Jpn., 2022, 95, 296­–305.
  11. Divergent Access to Seven/Five-Membered Rings Based on [1,6]-Hydride Shift/Cyclization Process, Hoshino, D. Mori, K. Org. Lett., 2021, 23, 9403­–9407.
  12. Stereoselective synthesis of highly congested tetralin-fused spirooxindoles with hydroxy group: pseudo oxygen atom induced hydride shift/cyclization process, Sakai, D. Machida, M.; Mori, K. Tetrahedron Lett., 2021, 83, 153408.
  13. Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Brønsted acid catalysts, Hoshino, D.; Mori, K. Org. Biomol. Chem., 2020, 18, 6602­–6606.
  14. Genome Mining-Based Discovery of Fungal Macrolides Modified by GPI-Ethanolamine Phosphate Transferase Homologs, Morishita, Y.; Aoki, Y.; Ito, M.; Hagiwara, D.; Kuroda, T.; Fukano, H.; Hoshino, Y.; Suzuki, M.; Taniguchi, T.; Mori, K.; Asai, T. Org. Lett., 2020, 22, 5876­–5879.
  15. Highly Stereoselective Synthesis of Fused Tetrahydropyrans via Lewis-Acid-Promoted Double C(sp3)–H Bond Functionalization, Yokoo, K.; Sakai, D.; Mori, K. Org. Lett., 2020, 22, 5801­–5805.
  16. Facile Synthesis of π-Conjugated Heteroaromatic Compounds via Weak-Base-Promoted Transition-Metal-Free C–N Coupling, Senoo, T.; Inoue, A.; Mori, K. Synthesis, 2020, 56, 1096­–1102.
  17. Expeditious Synthesis of Multi-Substituted Quinolinone Derivatives Based on Ring Recombination Strategy Yokoo, K.; Mori, K. Org. Lett.,2020, 22, 244­–248.
  18. Highly Diastereoselective Synthesis of Medium-Sized Carbocycle Fused Piperidines via Sequential Hydride Shift Triggered Double C(sp3)–H Bond Functionalization, Kataoka, M.; Otawa, Y.; Ido, N.; Mori, K.; Org. Lett. 2019, 21, 9334­–9338.
  19. Construction of Seven- and Eight-Membered Carbocycles by Lewis Acid Catalyzed C(sp3)–H Bond Functionalization, Otawa, Y.; Mori, K. Chem. Commun. 2019, 55 13856­–13859.
  20. Discovery of Fungal Polyene Macrolides via Post-Genomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi, Morishita, Y.; Zhang, H.-P..; Taniguchi, T.; Mori, K.; Asai, T. Org. Lett., 2019, 21, 4788­–4792.
  21. Synthesis of Seven-Membered Ring Containing Difluoromethylene Unitby Sc(OTf)3-Catalyzed Activation of Single C–F Bond in CF3 Group, Hisano, N.; Kimura, D.; Mori, K. Chem. Lett. 2019, 48, 771­–774.
  22. Diastereoselective Synthesis of CF3-substituted Spiroisochromans by [1,5]-Hydride Shift/Cyclization/Intramolecular Friedel-Crafts Reaction Sequence, Tamura, R.; Kitamura, E.; Tsutsumi, R.; Yamanaka, M; Akiyama, T.; Mori, K. Org. Lett. 2019, 21, 2383­–2387.
  23. Diastereoselective Synthesis of Multisubstituted Chroman Derivatives via Iminium Formation/Morita-Baylis-Hillman Reaction/Oxa-Michael Reaction Sequence, Ido, N. Mori, K. Chem. Lett. 2019, 48, 337­–340.
  24. Expeditious Synthesis of Multisubstituted Indoles via Multiple Hydrogen Transfers, Yoshida, T. Mori, K. Chem. Commun. 2018, 54, 12686­–12689.
  25. Construction of 1,3-Dithio-Substituted Tetralins by [1,5]-Alkylthio Group Transfer Mediated Skeletal Rearrangement, Hisano, N.; Kamei, Y.; Kansaku, Y.; Yamanaka, M.; Mori, K. Org. Lett. 2018, 20, 4223­–4226.
  26. Highly Diastereoselective Synthesis of Tricyclic Fused-Pyrans by Sequential Hydride Shift Mediated Double C(sp3)–H Bond Functionalization, Mori, K.; Umehara, N.; Akiyama, T. Chem. Sci. 2018, 9, 7327­–7331.
  27. Divergent Synthesis of CF3-Substituted Polycyclic Skeltons Based on Control of Activation Site of Acid Catalysts, Yokoo, K. Mori, K.; Chem. Commun. 2018, 54, 6927­–6930.
  28. Chiral Magnesium Bisphosphate Catalyzed Asymmetric Double C(sp3)–H Bond Functionalization Based on Sequential Hydride Shift/Cyclization Process, Mori, K.; Isogai, R.; Kamei, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2018, 140, 6203­–6207.
  29. Highly Diastereoselective Synthesis of Tetralin-Fused Spirooxindoles via Lewis Acid-Catalyzed C(sp3)–H Bond Functionalization, Machida, M. Mori, K. Chem. Lett. 2018, 47, 868­–871.
  30. Hf(OTf)4-Catalyzed highly diastereoselective synthesis of 1,3-disubstituted tetralin derivatives via benzylic C(sp3)–H bond functionalization, Yoshida, T. Mori, K. Chem. Commun. 2017, 53, 4319­–4322.
  31. Highly Efficient Kinetic Resolution of PHANOL by Chiral Phosphoric Acid Catalyzed Asymmetric Acylation, Mori, K.; Kishi, H.; Akiyama, T. Synthesis 2017, 365­–370.
  32. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution, Mori, K.; Itakura, T.; Akiyama, T. Angew. Chem. Int. Ed. 2016, 55, 11642­–11646.
  33. Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid Catalyzed Symmetry Breaking, Mori, K.; Miyake, A.; Akiyama, T. Chem. Commun. 2015, 51, 16107­–16110.
  34. Stronger Brønsted Acids: Recent Progress, Akiyama, T.; Mori, K.; Chem. Rev. 2015, 115, 9277–9306.
  35. Synthesis of 3-Aryl-1-trifluoromethyltetrahydroisoquinolines by Brønsted Acid Catalyzed C(sp3)–H Bond Functionalization, Mori, K.; Umehara, N.; Akiyama, T. Adv. Synth. Catal. 2015, 357, 901–906. (Selected as an vip and front cover article).
  36. Enantioselective Synthesis of Chiral Biaryl Chlorides/Iodides by a Chiral Phosphoric Acid Catalyzed Sequential Halogenation Strategy, Mori, K.; Kobayashi, M.; Itakura, T.; Akiyama, T. Adv. Synth. Catal. 2015, 357, 35–40.
  37. Stereoselective Construction of All Carbon Quaternary Center by Means of Chiral Phosphoric Acid: Highly Enantioselective Friedel-Crafts Reaction of Indoles with b,b-Disubstituted Nitroalkenes, Mori, K.; Wakazawa, M.; Akiyama, T. Chem. Sci. 2014, 5, 1799–1803.
  38. Double C(sp3)-H Bond Functionalization Mediated by Sequential Hydride Shift/Cyclization Process: Diastereoselective Construction of Polyheterocycles, Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2014, 136, 3744–3747.
  39. Expeditious Synthesis of 1-Aminoindane Derivatives Achieved by [1,4]-Hydride Shift Mediated C(sp3)-H Bond Functionalization, Mori, K.; Kurihara, K.; Akiyama, T. Chem. Commun. 2014, 50, 3729–3731.
  40. Enantioselective Fluorination of b-Ketoesters Catalyzed by Chiral Sodium Phosphate: Remarkable Enhancement of Reactivity by Simultaneous Utilization of Metal Enolate and Metal Phosphate, Mori, K.; Miyake, A.; Akiyama, T. Chem. Lett. 2014, 43, 137–139.
  41. Enantioselective Transfer Hydrogenation of Difluoromethyl Ketimines Using Benzothiazoline as a Hydrogen Donor in Combination with Chiral Phosphoric Acid, Sakamoto, T.; Horiguchi, K.; Saito, K.; Mori, K.; Akiyama, T. Asian. J. Org. Chem. 2013, 2, 943–946.
  42. Prediction of Suitable Catalyst by 1H NMR: Asymmetric Synthesis of Multisubstituted Biaryls by Chiral Phosphoric Acid Catalyzed Asymmetric Bromination, Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. Chem. Sci. 2013, 4, 4235–4239.
  43. Hydrodefluorinations of Trifluorotoluenes by LiAlH4 and TiCl4, Akiyama, T,; Atobe, K.; Shibata, M.; Mori, K. J. Fluorine. Chem. 2013, 152, 81–83.
  44. Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence, Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 3964–3970 (Highlighted in Synfacts).
  45. Kinetic Resolution in Chiral Phosphoric Acid Catalyzed Aldol Reactions: Enantioselective Robinson-Type Annulation Reactions, Yamanaka, M.; Hoshino, M.; Katoh, T.; Mori, K.; Akiyama, T. Eur. J. Org. Chem. 2012, 4508–4514.
  46. Chiral Phosphoric Acid Catalyzed Enantioselective Transfer Deuteration of Ketimines by Use of Benzothiazoline As a Deuterium Donor: Synthesis of Optically Active Deuterated Amines, Sakamoto, T.; Mori, K.; Akiyama, T. Org. Lett. 2012, 14, 3312–3315.
  47. Concise Route to 3-Arylisoquinoline Skeleton by Lewis Acid Catalyzed C(sp3)–H Bond Functionalization and Its Application to Formal Synthesis of (±)-Tetrahydropalmatine, Mori, K.; Kawasaki, T.; Akiyama, T. Org. Lett. 2012, 14, 1436–1439.
  48. Rapid Access to 3-Aryltetralin Skeleton via C(sp3)–H Bond Functionalization: Investigation on the Substituent Effect of Aromatic Ring Adjacent to C–H Bond in Hydride Shift/Cyclization Sequence, Mori, K.; Sueoka, S.; Akiyama, T. Chem. Lett. 2011, 40, 1386–1388 (Selected as an Editor’s Choice paper).
  49. Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: A Facile Synthetic Access to Highly Optically Active Trifluoromehylated Amines, Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem. Int. Ed. 2011, 50, 8180–8183 (Highlighted in Synfacts).
  50. Selective Activation of Enantiotopic C(sp3)–Hydrogen by Means of Chiral Phosphoric Acid: Asymmetric Synthesis of Tetrahydroquinoline Derivatives, Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166–6169 (Highlighted in Synfacts).
  51. Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of b-Amino-a,a-difluoro Carbonyl Compounds, Kashikura, W.; Mori, K.; Akiyama, T. Org. Lett. 2011, 13, 1860–1863.
  52. Expeditious Construction of a Carbobicyclic Skeleton via a sp3-C–H Functionalization: Hydride Shift from an Aliphatic Tertiary Position in an Internal Redox Process, Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424–2426.
  53. Chiral Brønsted Acid-Catalyzed Asymmetric Friedel-Crafts Alkylation of Indoles with a,b-Unsaturated Ketones: Short Access to Optically Active 2- and 3-Substituted Indole Derivatives, Sakamoto, T.; Itoh, J.; Mori, K.; Akiyama, T. Org. Biomol. Chem. 2010, 8, 5448–5454.
  54. Niobium-catalyzed Activation of CF3 Group on Alkene: Synthesis of Substituted Indenes, Fuchibe, K.; Atobe, K.; Fujita, Y.; Mori, K.; Akiyama, T. Chem. Lett. 2010, 39, 867–869.
  55. Expeditious Synthesis of Benzopyrans via Lewis Acid-Catalyzed C–H Functionalization: Remarkable Enhancement of Reactivity by an Ortho Substituent, Mori, K.; Kawasaki, T.; Sueoka. S.; Akiyama, T. Org. Lett. 2010, 12, 1732–1735.
  56. Enantioselective Friedel-Crafts Alkylation of Indoles with Trifluoropyruvate Catalyzed by Chiral Phosphoric Acid, Kashikura, W.; Itoh, J.; Mori, K.; Akiyama, T. Chem. Asian J. 2010, 5, 470–472.
  57. Chiral Phosphoric Acid-Catalyzed Desymmetrization of meso-1,3-Diones:  Asymmetric Synthesis of Chiral Cyclohexenones, Mori, K.; Katoh, T.; Suzuki, T.; Noji, T.; Yamanaka, M.; Akiyama, T. Angew. Chem. Int. Ed. 2009, 48, 9652–9654 (Highlighted in Synfacts).
  58. Expedient Synthesis of N-Fused Indoles: C–F Activation and C–H Insertion Approach, Fuchibe, K.; Kaneko, T.; Mori, K.; Akiyama, T. Angew. Chem. Int. Ed. 2009, 48, 8070–8073 (VIP article).
  59. Hydrogen-Bond Control in Axially Chiral Styrenes: Selective Synthesis of Enantiomerically Pure C2-Symmetric Paracyclophanes, Mori, K.; Ohmori, K.; Suzuki, K. Angew. Chem. Int. Ed. 2009, 48, 5638–5641.
  60. Stereochemical Relay via Axially Chiral Styrene: Asymmetric Synthesis of Antibiotic, TAN-1085, Mori, K.; Ohmori, K.; Suzuki, K. Angew. Chem. Int. Ed. 2009, 48, 5633–5637 (Highlighted in Nature Chemistry).
  61. Chiral Brønsted Acid-Catalyzed Hydrophosphonylation of Imines: DFT Study on the Effect of Substituents of Phosphoric Acid, Akiyama, T.; Morita, H.; Bachu, P.; Mori, K.; Yamanaka, M.; Hirata, T. Tetrahedron 2009, 65, 4950–4956.
  62. Enantioselective Mannich-type Annulation Reaction Catalyzed by a Chiral Phosphoric Acid Bearing (S)-Biphenol Backbone, Akiyama, T.; Katoh, T.; Mori, K.; Kanno, K. Synlett 2009, 1664–1666.
  63. Dual Functionlization of Allene: Facile Construction of Heteropolycycles Mediated by Brønsted Acid, Mori, K.; Sueoka, S.; Akiyama, T. Chem. Lett. 2009, 38, 628–629.
  64. Expeditious Construction of Quinazolines via Brønsted Acid Induced C–H Activation: Further Extension of “tert-Amino Effect”, Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524–525.
  65. Enantioselective Aza-Darzens Reaction Catalyzed by A Chiral Phosphoric Acid, Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445–2447.
  66. Enantioselective Robinson-type Annulation Reaction Catalyzed by Chiral Phosphoric Acids, Akiyama, T.; Katoh, T.; Mori, K. Angew. Chem. Int. Ed. 2009, 48, 4226–4228 (Highlighted in Synfacts).
  67. Synthesis and Stereochemical Assignment of Angucycline Antibiotic, PD-116740, Mori, K.; Tanaka, K.; Ohmori, K.; Suzuki, K. Chem. Lett. 2008
  68. Concise Total Synthesis and Structure Assignment of TAN-1085, Ohmori, K.; Mori, K.; Ishikawa, Y.; Tsuruta, H.; Kuwahara, S.; Harada, N.; Suzuki, K. Angew. Chem. Int. Ed. 2004, 43, 3167–3171
東京農工大学

PAGE TOP