Attempt to generate banana/plantain resistant to Fusarium oxysporum f. sp. cubense by irradiation-induced mutagenesis

Nobumitsu Sasaki¹, Rosa María Cabrera-Pintado², Sakura Takahashi¹, Jingai Che¹, Sakae Suzuki¹, Toshiyuki Fukuhara¹, Tomoko Abe³, Dina Lida Gutiérrez-Reynoso², Lilliana María Aragón-Caballero³, Tsutomu Arie¹

- 1. Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
- 2. Instituto Nacional de Innovación Agraria (INIA), La Molina, Lima 15024, Peru
- 3. RIKEN, Wako, Saitama 351-0198
- 4. Universidad Nacional Agraria La Molina (UNALM), La Molina, Lima 15024, Peru

Abstract

Fusarium wilt disease of banana/plantain is caused by *Fusarium oxysporum* f. sp. *cubense* (*Focb*). Recently, *Focb* race TR4, which causes wilt disease on the resistant cultivar 'Cavendish', has become a devastating threat to banana production worldwide. In the international collaborative SATREPS project between Japan and Peru, we are attempting to obtain TR4-resistant banana/plantain plants through irradiation-induced mutagenesis. *In vitro* tissue-cultured buds of three varieties (Isla, Bellaco Harton, and Bellaco Plantano) in addition to Cavendish, were irradiated with the heavy-ion beam in Japan, while Isla was used for gamma ray irradiation in Peru. The irradiated buds are grown *in vitro* and selected to obtain progeny generations through the chimera dissolution process. Race TR4-resistant lines will be screened after propagation and acclimatization of the plantlets from selected buds. (899 words: word count limit, 900 words)