Investigation of conductivity of adhesive layer including indium tin oxide particles for multi-junction solar cells

Shinya Yoshidomi • Masahiko Hasumi • Toshiyuki Sameshima

Received: 26 December 2013 / Accepted: 28 March 2014 © Springer-Verlag Berlin Heidelberg 2014

Abstract We report connection conductivity (C_c) of adhesive which including In₂O₃-SnO₂ (ITO) particles developed for fabrication of stacked-type-multi-junction solar cells. The commercial 20-µm sized ITO particles were heated in vacuum at temperature ranging from 800 to 1,300 °C for 10 min to increase C_c . 6.2 wt% ITO particles were dispersed in commercial Cemedine adhesive gel to form 100 samples structured with n-type Si/adhesive/n-type Si (n-Si sample) and p-type Si/adhesive/p-type Si (p-Si sample). Current density as a function of voltage (J–V) characteristics gave C_{c} . It ranged from 4.3 to 1.0 S/cm² for the n-Si sample with 800 °C heat-treated ITO particles. Its standard deviation was 0.59 S/cm². On the other hand, it ranged from 2.0 to 0.6 S/cm² for the p-Si sample with 800 °C heat-treated ITO particles. Its standard deviation was 0.22 S/cm². The distribution of C_c mainly resulted from contact efficiency of ITO particles to substrate. We theoretically estimated that present C_c achieved a low loss of the power conversion efficiency $(E_{\rm ff})$ lower than 0.3 % in the application of fabrication of multi-junction solar cell with an intrinsic $E_{\rm ff}$ of 30 % and an open circuit voltage above 1.9 V.

Keywords Multi-junction solar cell · Indium tin oxide · X-ray diffraction · Transparent conductive layer

1 Introduction

Semiconductor solar cells have been investigated as a clean device which converts sunlight into electrical power [1-5].

S. Yoshidomi · M. Hasumi · T. Sameshima (🖂)

Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan

e-mail: tsamesim@cc.tuat.ac.jp

Multi-junction solar cells are attractive for effectively collecting sunlight, which has a wide range spectrum from ultra violet to infrared. Technique for fabrication of multijunction solar cell by epitaxial growth has been investigated [6–17]. However, mass production requires fabrication of large-size solar cells at low cost [18]. We proposed fabrication of multi-junction solar cells by stacking individual solar cells used by intermediate adhesive layers [19]. Intermediate adhesive layer including In₂O₃–SnO₂ (ITO) particles which is conductive and transparent has been reported [19–21]. Moreover, the stacking of fragile 4-inchsized GaAs and Ge substrates has been reported [22]. We reported intermediate adhesive layer including ITO with connection conductivity (C_c) of 0.56 S/cm² [22]. Our reports indicated possibility for fabrication of multi-junction solar cells by stacking fragile and large size materials. However, improvement of conductivity of intermediate layer and control of distribution of conductivity are still required. In this paper, we discuss required conductivity for multi-junction solar cells. We report change in ITO particles by heating in vacuum using X-ray diffraction measurement. Then, we report distribution of C_c of intermediate layer.

2 Theoretical estimation of connection conductivity for multi junction solar cells

We theoretically estimated changes in solar cell characteristics and their conversion efficiencies with connection conductivity. The effective characteristic of multi-junction solar cells was assumed to be given by the theoretical formula with one PN diode and a series resistivity R_s giving a reciprocal C_c [23–26].

Fig. 1 Calculated solar cell characteristics with the effective conversion efficiency $E_{\rm ff}$ of 29.0, 29.5 and 30 % with different $V_{\rm oc}$

$$J = J_0 \left\{ \exp\left(\frac{q(V - R_s J)}{nkT}\right) - 1 \right\} + \frac{V - R_s J}{R_{sh}} - J_{ph}$$
$$= J_0 \left\{ \exp\left(\frac{q\left(V - \frac{J}{C_c}\right)}{nkT}\right) - 1 \right\} + \frac{V - \frac{J}{C_c}}{R_{sh}} - J_{ph}$$
(1)

where J, J_0 , $R_{\rm sh}$, n, and $J_{\rm ph}$ are current density, saturation current density, parallel resistivity, ideality factor, and photo current density, respectively. Intrinsic conversion efficiency $(E_{\rm ff})$, i.e., in the case of $C_{\rm c}$ becomes large enough, of 30 % was set to discuss the $C_{\rm c}$ in the equivalent circuit given above. Self-consistent calculation was conducted with different open circuit voltages (V_{oc}) in the range from 1.0 to 2.5 V for practical multi-junction solar cells. $C_{\rm c}$ limits the electrical current density in the circuit and changes solar cell characteristics. Therefore, $C_{\rm c}$ decreases effective $E_{\rm ff}$ in general. In the condition of the same effective $E_{\rm ff}$, a high $V_{\rm oc}$ allows a low $J_{\rm sc}$ and low $C_{\rm c}$. Figure 1 shows calculated solar cell characteristics with the effective $E_{\rm ff}$ of 29.0, 29.5 and 30.0 %. In the case of solar cell characteristics with $V_{\rm oc}$ of 1.0 V, $C_{\rm c}$ of 2.35 and 1.18 S/cm² were allowed to achieve $E_{\rm ff}$ of 29.5 and 29.0 %, respectively. On the other hand, in the case of $V_{\rm oc}$ of 2.5 V, C_c of 0.38 and 0.19 S/cm² were allowed to achieve effective $E_{\rm ff}$ of 29.5 and 29.0 %, respectively. Solar cell characteristics with low V_{oc} are strongly affected by C_c . On the other hand, in the case of solar cell with high $V_{\rm oc}$, low $C_{\rm c}$ is allowed. Figure 2 shows the $C_{\rm c}$ as a function of $V_{\rm oc}$ with effective $E_{\rm ff}$ of 28.0, 29.0, 29.5, and 29.7 % obtained from the J-V characteristics calculation shown in Fig. 1. C_c decreased as V_{oc} increased with every effective $E_{\rm ff}$ case. $C_{\rm c}$ at least 1.1 S/cm² is necessary for achieving the effective $E_{\rm ff}$ above 29.0 %, which meant an efficient loss of 1.0 %, for $V_{\rm oc}$ at 1.0 V because high electrical current needs with low V_{oc} . On the other hand, C_c of 1.1 S/ cm^2 achieved the effective $E_{\rm ff}$ higher than 29.5 % for $V_{\rm oc}$ above 1.5 V because low photo-induced current was

Fig. 2 C_c as a function of V_{oc} . The curves shows C_c as a function of V_{oc} with effective $E_{\rm ff}$ of 28.0, 29.0, 29.5 and 29.7 %. Region A and B represent experimental C_c within standard deviation of one σ of n-type and p-type sample, respectively

allowed. Multi-junction solar cells with high $V_{\rm oc}$ have, therefore, an advantage of low connection conductivity (high connection resistivity) in the fabrication of the solar cells. In this paper, we aimed to establish $C_{\rm c}$ above 1.1 S/ cm² for fabricating solar cells with an effective $E_{\rm ff}$ above 29.5 % associated with $V_{\rm oc}$ above 1.5 V.

3 Experimental

ITO particles were made by Kojundo Chemical Laboratory Co., Ltd.: light green particles were formed by heat treatment of 95 wt%-In₂O₃ and 5 wt%-SnO₂ powders in air atmosphere. Then, we selected 20 µm-sized particles by mechanical filtering with metal mesh membranes in our laboratory. Then, the ITO particles of 350 mg were placed in a central hollow of Ta boards with a size of $2.0 \times 0.9 \,\mathrm{cm}^2$. They were set in a vacuum chamber. The chamber was evacuated to 4.0×10^{-4} Pa. The Ta boards were heated by applying electrical power from 40 to 60 W for 10 min. Light emission from the heated Ta boards indicated that they were heated from 800 to 1,300 °C. Magnetic quadrupole mass spectrometry measurement revealed that oxygen partial pressure increased from 1.47×10^{-5} to 3.5×10^{-5} Pa as heating temperature increased from 800 to 1,300 °C. X-ray diffraction (XRD) measurement was performed with X-ray diffractometer (SmartLab, Rigaku corporation) using $CuK\alpha$ with a Ni filter for cutting CuK β . Crystalline states and composition ratio were precisely analyzed from experimental XRD data with Rietveld refinement using software of PDXL (Rigaku corporation). Then, ITO particles were dispersed in Cemedine, which was a commercial transparent epoxy-type adhesive. Base resin and hardener gels of Cemedine and ITO particles at 6.2 wt% were mixed together and they

Fig. 3 Schematic structure of sample. The overview of sample (a) and the cross section of sample (b)

were coated over the surfaces of 4-inch n- or p-type 0.001 Ω cm Si substrates. Their rear surfaces were coated with Al layers formed with the metal evaporation method for C_c measurement. 100 n or p-type 0.001 Ω cm Si pieces with a size of $0.6 \times 0.6 \text{ cm}^2$ with rear surface coated with Al layers were also prepared. They were then placed on the adhesive to form structure of Si/ITO/Si, as shown in Fig. 3. The Cemedine intermediate layers including ITO particles were hardened under a pressure at 4×10^5 Pa for 1 h. 100 n-type Si pieces/ITO + Cemedine/n-type Si substrate (n-type Si sample) and 100 p-type Si pieces/ITO + Cemedine/p-type Si substrate (p-type Si sample) were consequently fabricated. 100 J–V characteristics were measured for applying voltage to every Si piece each. C_c was obtained by average value of J/V at +0.1 and -0.1 V each piece.

4 Results and discussion

The weight of ITO particles were decreased from 350 mg to 300, 270, and 205 mg after the heat treatment in 4.0×10^{-4} Pa at 800, 1,000, and 1,300 °C for 10 min, respectively. Detailed structural change of ITO particles by the heat treatment was investigated by the XRD measurement. Figure 4 shows arbitral diffracted intensity of XRD measurement for the initial and heat-treated ITO particles. All peaks observed in Fig. 4 were assigned to In₂O₃ or SnO₂. No impurity peaks was observed. The details of peaks from *a* to *g* in Fig. 4 are described in Table 1. The peaks of *b* and *e*, assigned to SnO₂, abated as the heating temperature increased. Especially, in the case of 1,300 °C

Fig. 4 X-ray diffraction pattern of initial and heat-treated ITO particles

heating, the peaks of b and e disappeared. Figure 5 shows ratio of SnO₂ in total mass SnO₂/(SnO₂+In₂O₃) for the initial and heat-treated ITO particles obtained by analysis using Rietveld refinement. The initial ratio of SnO2 was estimated to be 3.5 wt%, although Kojundo Chemical Laboratory Co., Ltd. used 5 wt% SnO₂ for preparation of ITO particles used for the present experiment. A part of Sn atoms were probably incorporated into In₂O₃ during heat treatment in the company. The ratio of SnO₂ increased to 3.9 wt% by heat treatment at 800 °C. On the other hand, the ratio was markedly decreased by heat treatment at 1,000 °C. Moreover, no SnO2 was observed in the case of ITO particles heat treated at 1,300 °C. According to William J. Heward, the solubility of SnO₂ in In₂O₃ increases as temperature of heat treatment increases [27]. We believe that Sn atoms were completely incorporated into ln₂O₃ lattice sites by heating of ITO at 1,300 °C. We also believe that oxygen vacancies in ITO particles were simultaneously generated during heat treatment in vacuum through oxygen gas desorption. Figure 6 shows C_c of n-type Si sample (a) and p-type Si sample (b) which was serialized in descending order.

In the case of n-type Si sample, the highest C_c of 4.3 S/cm² was obtained for the n-type sample with 800 °C heated ITO. C_c was higher than 1.1 S/cm² for all n-type sample pieces formed with initial, 800 °C heated, and 1,000 °C heated ITO particles. 91 n-type sample pieces formed with 1,300 °C heated ITO particles also had C_c above 1.1 S/cm². The average values of C_c in 100 pieces were 1.82, 1.83, 2.05, and 1.59 S/cm² for n-type samples formed with initial, 800 °C heated, 1,000 °C heated, and

Table 1 Angular positions and sources of XRD spectral peaks shownin Fig. 4

	$2 heta(^\circ)$	Material
a	21.4	In ₂ O ₃ (211)
b	26.5	SnO ₂ (110)
c	30.5	In ₂ O ₃ (222)
d	33.0	In ₂ O ₃ (321)
e	33.8	SnO ₂ (101)
f	35.4	$In_2O_3(400)$
g	37.6	In ₂ O ₃ (411)

Fig. 5 Ratio of SnO_2 in total mass $SnO_2/(SnO_2 + In_2O_3)$ for initial and heat treated ITO particles

1,300 °C heated ITO particles, respectively. On the other hand, in the case of p-type Si samples, the C_c were lower than that of n-type Si samples. Numbers of sample pieces with C_c above 1.1 S/cm² were 70, 98, 49, and 60 for p-type samples formed with initial, 800 °C heated, 1,000 °C heated, and 1,300 °C heated ITO particles, respectively. The average values of C_c in 100 pieces were 1.24, 1.46, 1.06 and 1.11 S/cm² for p-type samples formed with initial, 800 °C heated, 1,000 °C heated, and 1,300 °C heated ITO particles, respectively. These results indicate that heating of ITO particles at 800 °C is useful. Figure 7 shows frequency probability as a function of $C_{\rm c}$ summarized with a C_c step of 0.1 S/cm² of p-type sample formed with 800 °C heated ITO particles shown in Fig. 6b. The probability distribution was fitted to the Gaussian distribution function as,

$$P(C_{\rm c}) = \frac{\exp\left(-\frac{(C_{\rm c}-a)^2}{2\sigma^2}\right)}{\int_0^\infty \exp\left(-\frac{(C_{\rm c}-a)^2}{2\sigma^2}\right) \mathrm{d}C_c}$$
(2)

Fig. 6 C_c of n-type Si sample (a) and p-type Si sample (b) serialized in descending order

where a, and σ were $C_{\rm c}$ at the maximum frequency and standard deviation of C_c , respectively. The experimental and Gaussian curves were roughly fitted in the case of a, and σ were 1.47 and 0.228 S/cm², respectively. Although ITO particles had different kinds of shape, we assumed that they had a sphere shape for simple discussion. When ITO particles with diameter of 20 µm were uniformly dispersed in Cemedine at 6.2 wt%, about 290 ITO particles were distributed per area of $0.6 \times 0.6 \text{ cm}^2$. If ITO particles were randomly distributed on silicon pieces, a standard deviation of particles was proportional to the square root of number of particles. On an assumption of 290 ITO particles on $0.6 \times 0.6 \,\mathrm{cm}^2$ Si piece gave the average C_c of 1.47 S/cm² shown above, one ITO particle has an effective conductivity of 0.0051 S/cm². In this case, standard deviation of $C_{\rm c}$ is estimated to be about 0.087 S/cm². This is much lower than experimental standard deviation of 0.228 S/ cm².

Figure 8 shows standard deviation of n-type and p-type samples. In the case of n-type Si sample, the standard deviation ranged from 0.59 to 0.24 S/cm². In the case of p-type sample, the standard deviations were distributed around from 0.29 to 0.17 S/cm². These results suggest that C_c was not seriously affected by the distribution of number of ITO particles under Si piece. Our microscope observation revealed that an average size of ITO particles was slightly decreased by heat treatment, and that the particles

Fig. 7 Frequency probability as a function of C_c summarized with a C_c step of 0.1 S/cm² for the p-type Si sample formed with 800 °C heated ITO particles. Gaussian curve fitting is also presented

Fig. 8 Standard deviation of C_c for the n-type and p-type Si samples

were uniformly dispersed in the adhesive with no serious agglomeration. There is a possibility of that the increases in C_c were induced by decrease in the size of ITO particles because superficial area of ITO particle per unit weight increased. On the other hand, distribution in C_c was also changed by heat treatment, as shown in Figs. 6, 7 and 8. This result indicates that all of ITO particles did not equally contact to the silicon surface. The contact probability between ITO and silicon can be changed by heat treatment. C_c is naturally governed by the ITO particle density par unit area, its average size, and contact probability.

Figure 9 shows J–V characteristics of n-type (a) and p-type Si samples (b) formed with 800 °C heated ITO particles with C_c ranged from 1.0 to 4.3 S/cm² and 0.9 to 2.0 S/cm², respectively. Both samples showed ohmic characteristics. ITO has many oxygen vacancies, which caused donor-like gap states in the upper half of the band gap [28–30]. Sn atoms in ITO had also donor states. Electron transfer between the silicon and ITO conduction

Fig. 9 J–V characteristics of n-type (a) and p-type samples (b) formed with ITO particles heat treated at $800\,^\circ\text{C}$

bands will easily occur via those energy states in spite of their band offset for the case of ITO particles and n-type Si contact. On the other hand, in the case of ITO particles and p-type Si contact, the higher band offset between the silicon valence and ITO conduction bands was overcome by recombination of holes in silicon and electrons in ITO with their wave function overlapping at the ITO/Si interface. We believe that the recombination probability slightly decreased $C_{\rm c}$ in the case of ITO particles and p-type Si contact with keeping ohmic characteristic compared with the case of ITO particles and n-type Si contact. High $C_{\rm c}$ and small distribution of $C_{\rm c}$ were simultaneously obtained for the n- and p-type sample with ITO particles heat treated at 800 °C. These results indicate that there is possibility of fabrication of intermediate layer with high and narrow distribution of C_c . According to calculation shown in Fig. 2, present C_c above 1.1 S/cm² achieves a low loss of $E_{\rm ff}$ lower than 0.3 % in the application of fabrication of multi junction solar cell with an intrinsic $E_{\rm ff}$ of 30 % and an open circuit voltage above 1.9 V.

5 Summary

We set the desired C_c as 1.0 S/cm² according to calculation of solar cell characteristics. ITO particles with a diameter of 20 µm were heated in vacuum by ranging heating temperature from 800 to 1.300 °C. XRD measurement revealed that heating of ITO at 800 °C increases ratio of SnO₂. On the other hand, the ratio of SnO₂ was decreased by heating of ITO above 800 °C. ITO particles at 6.2 wt% were mixed with commercial adhesive of Cemedine. They were coated over 4-inch n- or p-type 0.001 Ω cm Si substrates with. 100, $0.6 \times 0.6 \text{ cm}^2$ sized n- or p-type 0.001 Ω cm Si pieces were then placed on the adhesive. The Cemedine intermediate layers including ITO particles were hardened under a pressure at 4×10^5 Pa for 1 h. J–V characteristics were measured for each Si piece for n-type Si sample and p-type Si sample. In the case of n-type Si sample, sample formed with initial ITO, 800 °C heated ITO and 1,000 °C heated ITO showed high C_c above 1.1 S/cm². Especially, sample formed with 800 °C heated ITO showed high C_c of 4.3 S/cm². The standard deviation of sample with 800°C heated ITO was 0.59 S/cm². On the other hand, in the case of p-type Si sample, average C_c increased from 1.24 to 1.46 S/cm² for the sample with 800 °C heated ITO. According to fitting of frequency probability of p-type Si sample formed with 800 °C heated ITO particles, distribution of ITO particles is not main reason for change in distribution of C_c . The distribution of C_c mainly resulted from contact efficiency of ITO particles to substrate. However, high and small distribution of C_c was obtained for p-type sample. These results indicate that there is possibility of fabrication of intermediate layer with high $C_{\rm c}$ with low standard deviation.

Acknowledgments This work was partly supported by Grant in Aid for Science Research C from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 25420282 and 23560360), the New Energy and Industrial Technology Development Organization (NEDO).

References

- M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Jpn. J. Appl. Phys. **31**, 3518 (1992)
- J. Zhao, A. Wang, M.A. Green, F. Ferrazza, Appl. Phys. Lett. 73, 1991 (1998)

- 3. O. Schultz, S.W. Glunz, G.P. Willeke, Prog. Photovolt. Res. Appl. 12, 553 (2004)
- A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Prog. Photovolt. Res. Appl. 12, 113 (2004)
- S. Chhajed, M.F. Schubert, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 93, 251108 (2008)
- H. Sugiura, C. Amano, A. Yamamoto, M. Yamaguchi, Jpn. J. Appl. Phys. 27, 269 (1988)
- J.M. Olson, S.R. Kurtz, A.E. Kibbler, P. Faine, Appl. Phys. Lett. 56, 623 (1990)
- T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, M. Yamaguchi, M.J. Yang, Jpn. J. Appl. Phys. 36, 6215 (1997)
- 9. M. Yamaguchi, Sol. Energy Mater. Sol. Cells. 75, 261 (2003)
- M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, Sol. Energy 79, 78 (2005)
- M. Yamaguchi, T. Takamoto, K. Araki, Sol. Energy Mater. Sol. Cells. 90, 3068 (2006)
- M. Yamaguchi, K. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Oshita, Y. Okada, A. Yamamoto, T. Takamoto, K. Araki, Sol. Energy. 82, 173 (2008)
- E.A. Katz, J.M. Gordon, D. Feuermann, Prog. Photovolt. Res. Appl. 14, 297 (2006)
- F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Sol. Energy Mater. Sol. Cells 90, 2952 (2006)
- R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007)
- 16. D.J. Friedman, Curr. Opin. Solid State Mater. Sci. 14, 131 (2010)
- 17. A. Hadipour, B.D. Boer, P.W.M. Blom, Adv. Funct. Mater. 18, 169 (2008)
- 18. T. Saga, NPG Asia Mater. 2, 96 (2010)
- T. Sameshima, J. Takenezawa, M. Hasumi, T. Koida, T. Kaneko, M. Karasawa, M. Kondo, Jpn. J. Appl. Phys. 50, 052301 (2011)
- 20. T. Karasawa, Y. Miyata, Thin Solid Films 223, 135 (1993)
- S. Yoshidomi, M. Hasumi, T. Sameshima, K. Makita, K. Matsubara, M. Kondo, in Proceedings of 6th Thin Film Materials & Devices Meeting 130222027-1 (2012)
- J. Takenezawa, C. Akiyama, M. Hasumi, T. Sameshima, International Symposium on Innovative Solar Cells 2012, p 10 (Tokyo, 2012)
- 23. E. Karatepe, M. Boztepe, M. Colak, Sol. Energy 81, 977 (2007)
- K. Ishibashi, Y. Kimura, M. Niwano, J. Appl. Phys. 103, 094507 (2008)
- J.H. Lee, S. Cho, A. Roy, H. Jung, A.J. Heeger, Appl. Phys. Lett. 96, 163303 (2010)
- 26. A.B. Or, J. Appelbaum, Prog. Photovolt. 21, 713 (2013)
- 27. W.J. Heward, D.J. Swenson, J. Mater. Sci. 42, 7135 (2007)
- 28. O.N. Mryasov, A.J. Freeman, Phys. Rev. B. 64, 233111 (2001)
- 29. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)
- 30. A. Walsh, C.R.A. Catlow, J. Mater. Chem. 20, 10438 (2010)