Improvement of SiO₂ Properties and Silicon Surface Passivation by Heat Treatment with High-Pressure H₂O Vapor

Toshiyuki SAMESHIMA, Keiji SAKAMOTO, Yoshiyuki TSUNODA and Tadashi SAITOH

Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan

(Received August 28, 1998; accepted for publication October 7, 1998)

Heat treatment with high-pressure H₂O vapor was applied to improve the properties of SiO_x (x < 2) films formed by vacuum evaporation, for passivation of the silicon surface. Heat treatment at 340–420 °C changed SiO_x films into SiO₂ films with an Si–O–Si bonding network similar to that of thermally grown SiO₂ films. The densities of interface trap states and fixed positive charges were reduced to 6.5×10^{10} cm⁻²eV⁻¹ and 2.5×10^{11} cm⁻², respectively, after heat treatment at 340 °C with 2.4×10^{6} -Pa–H₂O vapor for 3 h. The heat treatment reduced the recombination velocity for the electron minority carriers from 1200 cm/s (as fabricated) to 140 cm/s.

KEYWORDS: SiO_x, Si–O–Si bonding network, density of fixed positive charges, density of interface trap states, recombination velocity of minority carrier

Although conventional solar cell passivation using thermal oxides requires temperatures between 850 °C and 1050 °C, many methods have been developed to establish low-cost, simple fabrication technologies. For example, plasmaenhanced chemical vapor deposition (PECVD) has become a promising technology for low temperature passivation of solar cells.¹⁻³⁾ Substrate temperatures during PECVD typically range between 250 °C and 350 °C. Recombination velocities lower than 100 cm/s have been reported for passivation using silicon oxide or silicon nitride films prepared by PECVD. Hydrogenation using hydrogen plasma or hydrogen radicals has also been widely investigated for the reduction of defects at the interface between insulator and silicon.^{4–6)} We have reported simple heat treatment at approximately 300 °C with high-pressure H₂O vapor, which improves the bulk properties of SiO₂ fabricated by PECVD, as well as SiO₂/single-crystalline Si interface properties.^{7,8)} Heat treatment markedly reduces the density of the fixed oxide charges in SiO₂ films as well as the density of trap states of SiO₂/Si, and reduces bonding strain at the SiO₂/Si interfaces. In this paper, we propose a simple passivation method of the silicon surface using high-pressure H₂O vapor annealing and SiO_x-film evaporation. SiO_x (x < 2) films are formed on silicon surfaces at room temperature by vacuum evaporation.⁹⁾Although they are defective, heat treatment with highpressure H_2O vapor oxidizes SiO_x films and improves the SiO_x/Si interfaces. Increase in the minority carrier lifetime and decrease in the recombination velocity after the annealing are reported.

SiO_x films were formed on the silicon surface using a thermal evaporation method. A powder of SiO with a purity of 99.99 % was put in a Ta boat connected to electrodes placed in a vacuum chamber. A silicon substrate was placed above the boat. There was a shutter between the boat and the sample. The chamber was evacuated to a pressure of 3×10^{-6} Torr. With the shutter closed, a voltage was applied to the Ta boat in order to heat it to just below the evaporation threshold for the desorption of gases adsorbed in the SiO powder, such as H₂O as well as H₂. After the pressure decreased to less than 1×10^{-5} Torr, the applied voltage was increased to realize a deposition rate of 40 nm/min. The shutter was then opened and the SiO evaporation initiated. The substrate temperature increased from room temperature to about 50 °C owing to radiation emitted from the heated Ta boat.

For heat treatment with high-pressure H₂O vapor, samples were placed in a pressure-proof stainless-steel chamber with a volume of 60 cm³ using a metal seal.⁷⁾ Pure water was also put into the chamber. The samples were heated by placing the chamber on a heater plate. The H₂O evaporated during heating and the gas pressure increased. Optical absorption spectra of SiO_x films were measured using Fourier transform infrared spectrometry (FTIR) to investigate Si-O-Si bonding states. In order to investigate the electrical properties of the SiO2/Si interface, metal-oxide-semiconductor (MOS) capacitors were fabricated on p-type Si with an orientation of (100) and a resistivity of $10 \,\Omega \text{cm}^{-1}$. Al was evaporated in vacuum and 100-nm-thick Al gate electrodes were formed at room temperature on the SiO_r films just after deposition or after heat treatment with high-pressure H₂O vapor. Capacitance responses at a frequency of 1 MHz were measured. The effective lifetime of excess minority carriers was also investigated for p-type Si with an orientation of (100) and a resistivity of 5000 Ω cm, by measuring the decay in the reflectivity of a 14-GHz-microwave-probe when the excess minority carriers were induced by 200-ns-pulsed-laser irradiation with a wavelength of 940 nm, in order to estimate the recombination velocity at the silicon surface coated with 100-nm-thick SiO_x films.^{10,11)}

Figure 1 shows the peak wave number of the optical absorption band caused by the Si-O-Si antisymmetric stretching vibration mode and the full-width at half maximum (FWHM) of the absorption band as functions of the heating temperature for sample heated with 1 cm³ of pure water for 3h. The spectra of the optical absorption coefficient at wave numbers between 800 cm⁻¹ and 1300 cm⁻¹ before and after heat treatment are shown in the inset. The absorption coefficient was obtained from measurements of transmissivity and reflectivity of the samples, using the simple equation of $T = (1 - R) \exp(-\alpha x d)$, where T is the transmissivity, *R* is the reflectivity, d is the film thickness and α is the optical absorption coefficient. Because SiO_x films were etched by heat treatment with high-pressure H₂O vapor,⁷⁾ we carefully measured the film thickness after heat treatment. Before heat treatment, the as-deposited 250-nm-thick SiO_x films showed a broad absorption band with a low peak wave number (1010 cm^{-1}) and a large the FWHM (160 cm^{-1}) , as shown by curve (a) in the inset. The peak wave number increased to 1076 cm^{-1} and FWHM decreased to 75 cm^{-1} as the heat-

Fig. 1. The peak wave number of the optical absorption band caused by the Si–O–Si antisymmetric stretching vibration mode and its full-width at half maximum (FWHM) of the absorption band as functions of the heating temperature when SiO_x samples were heated with 1-cm³ of pure water for 3 h. Inset shows optical absorption coefficient per unit film thickness for SiO_x samples as-deposited (a) and annealed at $340 \,^{\circ}C$ (b). Dashed curve (c) is the spectrum of thermally grown SiO_2 at $1000 \,^{\circ}C$, which was drawn with a maximum absorbance coincident with that of SiO_x annealed at $340 \,^{\circ}C$.

ing temperature increased from 180 °C to 420 °C for highpressure H₂O vapor annealing. The spectral line shape was markedly changed and became almost the same as that of thermally grown SiO₂ films after heat treatment at temperatures of 340 °C and 420 °C, as shown by curves (b) and (c) in the inset. These optical changes mean that the annealed films had an Si-O-Si bonding network similar to that of thermally grown SiO₂ films. Figure 2 shows a total optical absorbance per unit film thickness, which was obtained by integration of the absorption coefficient from $850 \,\mathrm{cm}^{-1}$ to $1300 \,\mathrm{cm}^{-1}$. which corresponds to the volume density of Si-O bonds in the films, as a reciprocal function of annealing temperature. The initial SiO_x films had a low total opticl absorbance per unit film thickness of $1.35 \times 10^6 \text{ cm}^{-2}$, which is 0.49 times that of thermally grown SiO₂ films, because thermally evaporated SiO_x films had many oxygen defects. The total optical absorbance per unit film thickness increased as the annealing temperature increased. The activation energy of increase in the total optical absorbance per unit film thickness was 0.064 eV, as shown in Fig. 2. This low activation energy means that the SiO_x films can be easily oxidized by the heat treatment with high-pressure H₂O vapor. The total optical absorbance per unit film thickness had a maximum value of 2.61×10^6 cm⁻² when SiO_x film was annealed at 340 °C. It was 0.94 times that of thermally grown SiO₂ films. Because the absorption spectral line shape resulting from the Si-O-Si antisymmetric stretching vibration mode after annealing at 340 °C was almost the same as that of thermally grown SiO₂ films, we hypothesize the existence of voids in the film, which reduce the average volume density of Si-O bonds. The thermal evaporation would not result in films as dense as thermally grown films. The total optical absorbance per unit film thickness for annealing at 420 °C was lower than that for an-

Fig. 2. The total optical absorbance caused by the Si–O–Si antisymmetric stretching vibration mode per unit film thickness, which was obtained by integration of the absorption coefficient from of 850 cm⁻¹ to 1300 cm⁻¹ as a function of the reciprocal annealing temperature. Because 1 cm³ of pure water was used under every annealing condition, the H₂O pressure was 1.4×10^6 Pa, 4.1×10^6 Pa, 4.7×10^6 Pa and 5.3×10^6 Pa for annealing temperatures of 180 °C, 270 °C, 340 °C and 420 °C, respectively. The total optical absorbances per unit film thickness of as-deposited SiO_x and thermally grown SiO₂ are also shown.

Fig. 3. The densities of fixed positive charges and interface trap states as functions of H₂O-vapor pressure. The SiO_x samples were annealed at 340 °C for 3 h. The experimental errors were 3×10^{10} cm⁻²eV⁻¹ for minimum densities of fixed positive charges and interface trap states, respectively.

nealing at 340 °C. Annealing at 420 °C would cause substantial etching of Si–O bonds, especially weak bonds in the films, so that the density of voids would increase and the density of Si–O bonds would decrease.

Figure 3 shows the densities of interface trap states and fixed positive charges as functions of H₂O vapor pressure, obtained from the data of capacitance vs voltage applied to the MOS capacitors when the sample was annealed at 340 °C for 3 h. The density of fixed positive charges was markedly reduced from 1.6×10^{12} cm⁻² to 5.6×10^{10} cm⁻² because the number of Si dangling bonds caused by oxygen defects was reduced through oxidization in high-pressure H₂O vapor, so that the density of positive-charge-trapped states, for example

Fig. 4. The effective lifetime of electron excess minority carriers for p-type CZ silicon with a resistivity of 5000 Ω cm, whose surfaces were coated with SiO_x film, and the recombination velocity estimated from the effective lifetime as functions of H₂O-vapor pressure. The samples were annealed at 340 °C for 3 h. The experimental error of the maximum carrier lifetime was 50 μ s so that the experimental error of the recombination velocity was 15 cm/s.

the E' center, was reduced. Although the density of interface trap states was high at $1.7 \times 10^{12} \text{ cm}^{-2} \text{eV}^{-1}$ for as-deposited samples, it was reduced to 1.5×10^{10} cm⁻²eV⁻¹ as H₂O-vapor pressure was increased to 4.7×10^6 Pa. This result means that the Si dangling bonds at SiO₂/Si interfaces were effectively reduced in number through low- temperature annealing with high-pressure H₂O vapor. The effective lifetime of electronexcess minority carriers for p-type CZ silicon, whose surface was coated with SiO_x films, was increased by heat treatment with high-pressure H₂O vapor. The sample coated with asdeposited SiO_x films had a low lifetime of 80 μ s, as shown in Fig. 4, although it had a long lifetime of 2.8 ms when both bare surfaces were passivated with ethyl-alcohol liquid containing 3 weight % iodine.¹²⁾ This means that there was a high density of trap states for electron minority carriers at the interfaces of as-deposited SiO_x/Si . Heat treatment with high-pressure H₂O vapor increased the lifetime of the minority carriers. The maximum lifetime was $580 \,\mu$ s, which was obtained after 2.4×10^{6} Pa–H₂O-vapor heat treatment, as shown in Fig. 4. The maximum lifetime gave the minimum carrier recombination velocity of 140 cm/s, although the recombination velocity was high, 1200 cm/s, for the case of asdeposited SiO_x/Si , as shown in Fig. 4. An interesting result is that heat treatment with high-pressure H₂O vapor reduced the carrier recombination velocity as well as the density of fixed positive charges. The field effect passivation caused by positive charges fixed in insulators is well known.¹³⁾ A high density of positive charges can cause an increase in the density of minority electron carriers at SiO₂/Si interfaces and reduce their recombination velocity. The reduction in the density of

T SAMESHIMA et al.

fixed positive charges means that the reduction in the recombination velocity results not from field effect passivation, but mainly from reduction in the density of the carrier trap states at the SiO₂/Si interfaces.

A simple method for passivation of the silicon surface was proposed. SiO_x (x < 2) films were formed on silicon surfaces at room temperature by vacuum evaporation. Although they are defective and their Si-O bonding network was far different from that of thermally grown SiO₂ films, heat treatment with high-pressure H₂O vapor oxidized SiO_x films and changed film properties so that they became similar to those of thermally grown SiO₂ films. The peak wave number of the optical absorption band caused by the Si-O-Si antisymmetric stretching vibration mode was increased from $1010 \,\mathrm{cm}^{-1}$ (initial) to $1076 \,\mathrm{cm}^{-1}$ after heat treatment at $420\,^{\circ}\mathrm{C}$ with 4.7×10^6 Pa H₂O vapor for 3h, and the FWHM of the absorption band was reduced from 160 cm^{-1} to 75 cm^{-1} . The volume density of Si-O bonds was increased with a thermal activation energy of 0.064 eV. The densities of interface trap states and fixed positive charges were reduced to $6.5 \times 10^{\overline{10}} \text{ cm}^{-2} \text{eV}^{-1}$ and $2.5 \times 10^{11} \text{ cm}^{-2}$, respectively, after heat treatment at 340 °C with 2.4×10⁶ -Pa-H₂O vapor for 3 h. The effective lifetime of electron-excess minority carriers for p-type CZ silicon was increased from 80 μ s to 580 μ s after the heat treatment. This means that the recombination velocity was reduced from 1200 cm/s (as fabricated) to 140 cm/s. These results suggest that the present method will be useful for fabricating solar cells at a low temperature and at low cost.

- Z. Chen, S. K. Pang, K. Yasukake and A. Rohatigi: J. Appl. Phys. 74 (1993) 2856.
- A. G. Aberle, T. Lauinger, J. Schmidt and R. Hezel: J. Appl. Phys. Lett. 66 (1995) 2828.
- C. Leguijt, P. Loelgen, J. A. Eickelboom, A. S. H. van der Heide, R. A. Steeman, W. C. Sinke, P. M. Sarrp, L.A. Verhoef, P.-P. Michiels, Z. H. Chen and A. Rohatgi: *Proc. in 12th Europ. Photovolt. Solar Energy Conf.* (H. S. Stephens, Bedford, 1994) p. 720.
- 4) S. J. Pertron, J. W. Corbett and T. S. Shi: Appl. Phys. A43 (1987) 153.
- H. Nagayoshi, Y. Onozawa, M. Ikeda, M. Yamaguchi, Y. Yamamoto, T. Uematsu, T.Saitoh and K. Kamisako: Jpn. J. Appl. Phys. 35 (1996) L1047.
- H. E. Elgamel, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs and R. Mertens: Proc. of 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 1994 (IEEE, Salem) p. 1323.
- 7) T. Sameshima and M. Satoh: Jpn. J. Appl. Phys. 36 (1997) L687.
- T. Sameshima, K. Sakamoto and M. Satoh: to be published in Thin Solid Films (1998).
- T. Sameshima, A. Kohno, M. Sekiya, M. Hara and N. Sano: Appl. Phys. Lett. 64 (1994) 1018.
- J. M. Borrego, R. J. Gutmann, N. Jensen and O. Paz: Solid-State Electron. 30 (1987) 195.
- 11) G. S. Kousik, Z. G. Ling and P. K. Ajmera: J. Appl. Phys. 72 (1992) 141.
- 12) T. S. Horanyi, T. Pavelka and P. Tuettoe: Appl. Surf. Sci. 63 (1993) 306.
- 13) K. Yasutake, Z. Chen, S. K. Pang and A. Rohatgi: J. Appl. Phys. 75 (1994) 2048.