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Definition of QLA
©00000

Definition of a quantum loop algebra U,(Lg)

g: simple Lie algebra/C
(e.g. sl :== {X € Mat(n,C) | tr X =0}, [X,Y]=XY —YX)
Lg:=g®C[t,t7!]: loop algebra (X ® f,Y ®g]=[X,Y]® fg)
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Definition of a quantum loop algebra U,(Lg)

g: simple Lie algebra/C
(e.g. sl :== {X € Mat(n,C) | tr X =0}, [X,Y]=XY —YX)
Lg:=g®C[t,t7!]: loop algebra (X ® f,Y ®g]=[X,Y]® fg)

Quantum loop algebra U,(Lg) (QLA)

= the quantized enveloping algebra assoc. with Lg.

a (Lie algebra such as g, Lg)

= U(a): universal enveloping algebra of a (associative C-algebra)

q—deform

U,(a): the quantized env. algebra (associative C(g)-algebra)
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universal enveloping algebra

First step a: Lie algebra = U(a): universal enveloping algebra

Ua) :=T(a)/(XY —-YX — [X,Y] | X,Y € a)
(T(a) == @7, T*(a): tensor algebra of a,

i.e. the free (associative) algebra generated by a)



Definition of QLA
©0®0000

universal enveloping algebra

First step a: Lie algebra = U(a): universal enveloping algebra

Ua) :=T(a) (XY —YX — [X,Y]| X,Y € q)
(T(a) == @7, T*(a): tensor algebra of a,

i.e. the free (associative) algebra generated by a)

Rem. V is an a-module < V is a U(a)-module

(c.f. group algebra C[G] for a group G)
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quantized enveloping algebra

Second step U(a): univ. env. alg. adefom U,(a): quantized env. alg.

Uy(a) is defined as a g-deformation of U(a) i.e. “limy—1 Uy(a) = U(a)".
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quantized enveloping algebra

q—defom

Second step U(a): univ. env. alg. "= U,(a): quantized env. alg.

Uy(a) is defined as a g-deformation of U(a) i.e. “limy—1 Uy(a) = U(a)".
Ex1l a=slpb=C (8 (1)> eC ((1) _01) EBC(? 8) =CedChapCf
le, f]=h, [h,e] =2e, [h,[]=-2f

U(sly): the C-algebra generated by e, h, f with relations:

ef —fe=h, he—eh=2e, hf—fh=-=-2f —(%)

(Recall U(a):=T(a)/(XY —YX — [X,Y]| X,Y €a))
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quantized enveloping algebra

Second step U(a): univ. env. alg. adefom U,(a): quantized env. alg.

Uy(a) is defined as a g-deformation of U(a) i.e. “limy—1 Uy(a) = U(a)".

0 1\ f1 0N (0 O\ _ vy oy
x.1 asb@(o 0)*@<() 1),,@(1 0)@(”@;;,\,,@(/

le, fl=h, [h,e] =2e, [h,f]=-2f

U(sly): the C-algebra generated by e, h, f with relations:
ef —fe=h, he—eh=2e, hf—fh=-=2f —(%)
(Recall U(a):=T(a)/(XY —-YX —[X,Y]| X,Y €aq))
U,(sl): the C(q)-algebra gene'd by e, ¢™", f with relations:

h__—h _ _ _
g =g =1, ef —fe="T"0r, dPeq =P, "fa=q7f
(q=1+t, ¢" =1+th, t — 0 recovers (x))
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Ex.2 a= Lsly (= sl ® C[tt!])
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Ex.2 a = Lsly (= sly ® C[t*!])

U(Lsly): the C-algebra generated by e, h, f, €, f with rel.:

o e, h, f satisfy the rel. in U(sly), o é, h, f satisfy the rel. in U(sly),
o &3f —38%fe+3efe® — fe3 =0, fle—3f2ef+3fef?—éf3 =0,
o The same with ¢, f replaced by f,e
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o &3f —38%fe+3efe® — fe3 =0, fle—3f2ef+3fef?—éf3 =0,

o The same with ¢, f replaced by f,e

Uy(Lsly): the C(q)-alg. gene'd by e, ¢*", f, g, f with rel.:

o e,q", f satisfy the rel. in Uy(slz), o &,q*", f satisfy the rel. in Uq(sla),

o &f —[3le*fe+ [3lefe’ — f&® =0, fPe—[3]f%ef + [3]fef* —ef* =0
Bl=¢"+1+4q7?),
o The same with é, f replaced by f,e
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Ex.2 a= Lsly (= sly ® C[tF!])

U(Lsly): the C-algebra generated by e, h, f, & f with rel.

o e, h, f satisfy the rel. in U(sly), o &,h, f satisfy the rel. in U(sly),

o &3f —3e%fe+3efe? — fed =0, fle—3f2Ef +3fef?—éf3 =0,

o The same with ¢, f replaced by f e

U,(Lsly): the C(q)-alg. gene'd by e, ¢, f, &, f with rel.:

o e,qt", f satisfy the rel. in U,(slp), o é,q*", f satisfy the rel. in U,(sla),

o&3f —[3|e2fe+ [3lefe? — fe3 =0, f3e— [3]f%ef + [3]fef? —ef3 =0
(Bl =a*+1+q72),

o The same with ¢, f replaced by f,e

Lg =g ® C[t*!] (g: simple Lie alg.) ~ U,(Lg): quantum loop alg.

6/21
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Note Uf(a) is a Hopf algebral
i.e. Zcoproduct A: U(a) — U(a) ® U(a), “counit e: U(a) — C,
Fantipode S: U(a) = U(a)° with some compatibility.
(= If V,W are U(a)-mod., then V@ W, C, V* become U (a)-modules.)
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Q. There are any number of algebras which specialize to U(a) at
q = 1. Why the g-derom. Uy(a) is particulaly important?
Note Uf(a) is a Hopf algebral
i.e. Fcoproduct A: U(a) — U(a) ® U(a), Zcounit e: U(a) — C,
Fantipode S: U(a) = U(a)° with some compatibility.
(= If V,W are U(a)-mod., then V@ W, C, V* become U (a)-modules.)

Uq(a) has a Hopf algebra structure.

That is, Uy(a) is g-deform. of U(a) as a Hopf algebral
Rem. Moreover, U,(a) is a quasi-triangular Hopf alg., which implies
that a solution (R-matrix) of the Yang-Baxter equation can be obtained

from a pair of U,(a)-modules.
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Motivation to the study of fin. dim. U,(Lg)-mod.

@ All the U,(Lg)-modules are too large to controll.
@ f.d. Uy(Lg)-mod. have rich structures:
o The category of f.d. U,(Lg)-mod. is a monoidal category via ®
(Recall Uy(Lg): Hopf alg. = V @ W: U,(Lg)-mod.)
o not semisimple o uncountable simple modules
@ have connection to other fields:
o integrable system
o geometry on quiver variety (instanton moduli on ALE space)

o combinatorics, cluster algebra, ..., etc.

@ many problems remain unsolved (str. of simple mod., tensor prod.)
c.f., f.d. Uy(g)-mod. are deeply understood <— next slides
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@ f.d. Uy(g)-mod. are semisimple (i.e. "V = @(simple))
@ {f.d. simple U,(g)-mod.} & Z%,

VaA) < A=A, )




fin. dim. U,(g)-modules

Proposition
@ f.d. Uy(g)-mod. are semisimple (i.e. "V = @(simple))
@ {f.d. simple U,(g)-mod.} & Z%,

VaA) < A=A, )

Q. o Study the structure of simple mod. V;()), such as character ch V().

(V =@, Va: simultaneous eigensp. dec. w.r.t. a comm. subalg.
= chV =3 t*dimV, € Z[t{', ... tF1])

o Given two simple Ugy(g)-mod. V,(X), V,(i), determine the
multiplicities [V, () @ V(i) : Vg (v)] for every v.



Definition (Classical limit)

V: fd. Uy(g)-mod. "% V: f.d. U(g)-mod. (=g-mod.)
(Recall “limg,1 Uq(g) = U(g)")
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fin. dim. Ug (g)-modules

V: fd. Uy(g)-mod. "% V: f.d. U(g)-mod. (=g-mod.)
(Recall “limg,1 Uq(g) = U(g)")

@ For every A € Z2%, V(A) := V() is a simple g-mod., and
Vy(A) = V() induces a bij. from {f.d. simple U,(g)-mod.}
to {f.d. simple g-mod.}

(= chV4(A) = ch V(X)) < Weyl's character formula)

@ Forall \,u,v e Zgo,

[Va(N) @ Vo) - V()] = [V(A) ® ‘?(u) V()]

combinatorial formulas

10/21



fin. dim. Uy (Lg)-modules
0

fin. dim. U,(Lg)-modules

Theorem (Chari-Pressley, 95)
{f.d. simple U,(Lg)-mod.}
& {m = (m(u).....mn(w) | mh(u) € 1+ uC(q)[ul}
Denote the simples by L,(7) (7 are called the Drinfeld polynomials).

Rem. f.d. U,(Lg)-mod. are not semisimple.
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0

fin. dim. U,(Lg)-modules

Theorem (Chari-Pressley, 95)
{f.d. simple U,(Lg)-mod.}
& {m = (m(u).....mn(w) | mh(u) € 1+ uC(q)[ul}
Denote the simples by L,(7) (7 are called the Drinfeld polynomials).

Rem. f.d. U,(Lg)-mod. are not semisimple.

Q. (i) Study the structure of Ly().
(i) Study Ly(m) @ Lg(7').

Rem. By the geometric rep. theory on quiver varieties, H. Nakajima has
obtained an algorithm to give characters (or g-characters) of every L, ().
The algorithm is very complicated, however, and a closed formula is still
to be established (at least to some “good class” of simple modules).
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V: f.d. Uy(Lg)-mod. wih some conditions (e.g. almost all simples)
a1 . U(Lg)-mod. = Lg-mod.
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a1 . U(Lg)-mod. = Lg-mod.

Goal Study the structure of V' by observing V instead.

good point o U(Lg) is a much simpler alg. than U,(Lg).

0g=9g®1Cg®C[tt] = Lg: Lie subalg., U,(g) C U,(Lg): subalg.,
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fin. dim. Uy (Lg)-modules
oce

classical limits of f.d. U,(Lg)-modules

V: f.d. Uy(Lg)-mod. wih some conditions (e.g. almost all simples)
a1 . U(Lg)-mod. = Lg-mod.
Goal Study the structure of V by observing V instead.

good point o U(Lg) is a much simpler alg. than U,(Lg).
0g=9g®1Cg®C[tt] = Lg: Lie subalg., U,(g) C U,(Lg): subalg.,
and V 2y, ) D, VoM™ < V =, B, V(N)T™,
that is, taking the classical limit does not loose any information of
the U,(g)-module structure (in particular, chV =chV)

bad point

f.d. Lg-modules are not semisimple, and even V is simple, V is

rarely simple = need to treat a nonsimple, indec. Lg-mod.

12 /21
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(1) classical limits of simple modules

Strategy
Given V': simple U,(Lg)-mod. g 7, U(Lg)-mod.(= Lg-mod.)
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(1) classical limits of simple modules

Strategy
limg 1 ~—
Given V': simple U,(Lg)-mod. RS U(Lg)-mod.(= Lg-mod.)
Basically, the study of V is divided into the following two steps:
@ V is generated by a distinguished vector called an /-highest weight
vector (f-h.w.v.) v. The first step is to find a “good” defining

relations of v, i.e., find a “good" subset S C U(Lg)
st. Ann(v) =U(Lg) S (< U(Lg)/U(Lg)S = V).
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Results
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(1) classical limits of simple modules

Strategy
Given V': simple U,(Lg)-mod. g 7, U(Lg)-mod.(= Lg-mod.)
Basically, the study of V is divided into the following two steps:

@ V is generated by a distinguished vector called an /-highest weight
vector (f-h.w.v.) v. The first step is to find a “good” defining
relations of v, i.e., find a “good" subset S C U(Lg)
st. Ann(v) =U(Lg) S (& U(Lg)/U(Lg) S = V).

@ Using U(Lg)/U(Lg) S =V, determine its character, simple
g-module dec., etc.

As a consequence, we obtain the information on the structure of V
such as character, simple U,(g)-mod. dec., etc.

13/21



Results
0®0000000

Notation and Definition

Recall
{f.d. simple U,(Lg)-mod.} o {(m1(u),...,mp(u)) | mx(0) = 1} =: D

For A = ()\1,.. . ,)\n) S ZTZLO, D = {(7T1,...,71’n) ’ deg 7, = )\k} cD
Fact If w € DA, Ly(m) =u,(s) Va(A) © (smaller simple Uy(g)-mod.).
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Results
0®0000000

Notation and Definition

Recall
{f.d. simple U,(Lg)-mod.} o {(m1(u),...,mp(u)) | mx(0) = 1} =: D

For A = ()\1,.. . ,)\n) S ZTZLO, D = {(7T1,...,71’n) ’ deg 7, = )\k} cD
Fact If w € DA, Ly(m) =u,(s) Va(A) © (smaller simple Uy(g)-mod.).

Definition

For A € Z%, Ly(m) is a minimal affinization with weight A

% smallest dimensional among {L,(r) | = € D*}.

The case A = le; = (0,...,0,4,0,...,0) (1 <i<mn,leZsg)is
particulary important in integrable system. These special min. affiniz.

are called Kirillov-Reshetikhin (KR) modules with weight le;

14 /21



Results
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classical limits of Kirillov-Reshetikhin module

Let {W%(a) | a € C(q)*} denote the KR modules with weight /e;.
Study of KR mod. in integrable system

~+ conjectural formula for simple U,(g)-mod. dec.:

Wot(a) = 0(0) @I/(J()\)@mmm (KR conjectrue)
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Results
00@000000

classical limits of Kirillov-Reshetikhin module

Let {W%(a) | a € C(q)*} denote the KR modules with weight /e;.
Study of KR mod. in integrable system

~+ conjectural formula for simple U,(g)-mod. dec.:

Wot(a) = 0(0) @I/(J()\)@mmm (KR conjectrue)

Theorem (Chari, 01)
Assume that g is of type A,, B,, C,, or D,, and v € W (a) is £-h.w.v.
(i) Ann(v) = U(Lg) S with a certain subset S of elements in U(Lg)

(S=nyf]U(b®(E—a(1) UL f (G #1), fi®t})
(ii) KR conj. holds.

Recall Simple Lie algebras are classified into types

An (5[n+l)r Bn (502n+1)v Cn (ﬁpzn), Dn (50271): E67E7aE81 F4, G2-

15/21



Results
[ole]e] Yololelele)

(i) Ann(v) = U(Lg) S (& U(Lg)/U(Lg) S = V)
(i) KR conj. holds. (W¥(a) =0 () P V, (A)EmieN)

’ sketch of proof‘

Fact If g is of type ABCD, m; (X)) <1 for any .

o U(Lg)/U(Lg)S — V is easy to prove.

o Prove [U(Lg)/U(Lg) S : V(N)] < mje(N).

o Prove [W¥(a) : V4(A\)] > m;¢(\) (hard calculation in U,(Lg)) O

It seems difficult to apply this proof to wider class of simple modules!
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(i) Ann(v) = U(Lg) S (& U(Lg)/U(Lg) S = V)
(i) KR conj. holds. (W¥(a) =0 () P V, (A)EmieN)

’ sketch of proof‘

Fact If g is of type ABCD, m; (X)) <1 for any .

o U(Lg)/U(Lg)S — V is easy to prove.

o Prove [U(Lg)/U(Lg) S : V(N)] < mje(N).

o Prove [W¥(a) : V4(A\)] > m;¢(\) (hard calculation in U,(Lg)) O

It seems difficult to apply this proof to wider class of simple modules!

Rem. KR conj. has been proved in general types using the theory of
g-characters.
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Results
[ole]e]eY Tolelele)

class. lim. of minimal affinizations

Theorem (N, Li-N, "13-'15)
Assume g is of type ABCD or G2, and let v be an ¢-h.w.v. of a minimal

affinization W with weight A € Z%,.
Then there exists a “good” subset S C U(Lg) s.t. Ann(v) = U(Lg) S.

17/21



Results
[ole]e]eY Tolelele)

class. lim. of minimal affinizations

Theorem (N, Li-N, "13-'15)

Assume g is of type ABCD or G2, and let v be an ¢-h.w.v. of a minimal
affinization W with weight A € Z%,,.

Then there exists a “good” subset S C U(Lg) s.t. Ann(v) = U(Lg) S.

Corollary
By analizing U(Lg)/U(Lg) S, we obtain:
@ 2 Jacobi-Trudi type character formula in type ABC D, which

expresses the character as a determinant of a matrix (new in C'D).
@ a polyhedral multiplicity formula in type G2, which expresses
[W : V()] as # of the lattice pts in a polyhedron.

17/21



Results
00000®000

Def. g[t] =g® C[t] C Lg=g® C[t,t]: current algebra.

sketch of the poof of U(Lg)/U(Lg) S = W

o U(Lg)/U(Lg) S — W is easy.
o It is enough to show Fsurj. W — U(Lg)/U(Lg) S

& Fg[t]-mod. surj. W — U(g[t])/U(g[t])S’, where S’ = U(g[t]) N S.
We use the theory of the affine Lie algebra g to prove this!

18/21
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Def. g[t] =g® C[t] C Lg=g® C[t,t]: current algebra.

sketch of the poof of U(Lg)/U(Lg) S = W

o U(Lg)/U(Lg) S — W is easy.
o It is enough to show Fsurj. W — U(Lg)/U(Lg) S

& Fg[t]-mod. surj. W — U(g[t])/U(g[t])S’, where S’ = U(g[t]) N S.
We use the theory of the affine Lie algebra g to prove this!
g=g®C[t,t7 1] ® CK: affine Lie algebra
([X®f4+aK,Y®g+bK|=[X,Y]® fg+ K(X,Y)Resi—o g - df /dt)

Rem. g[t] is a Lie subalgebra of g, but Lg is not!
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§ has a good class of simple modules {V(A) | A € Z’;gl} called integrable
highest weight modules.
Definition

A glt]-submodule U (g[t]) (vu;a, ® - ® viya,) C V(A1) ® - @ V(Ay)

is called a generalized Demazure module, where {vyp | w € W} are

distinguished vectors in V(A) called extremal weight vectors.

Theorem (Joseph, Lakshmibai-Littelmann-Magyar)

By using the representation theory of g, we can determine defining

relations of (a subclass of) generalized Demazure modules.
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highest weight modules.
Definition

A glt]-submodule U (g[t]) (vu;a, ® - ® viya,) C V(A1) ® - @ V(Ay)

is called a generalized Demazure module, where {vyp | w € W} are

distinguished vectors in V(A) called extremal weight vectors.

Theorem (Joseph, Lakshmibai-Littelmann-Magyar)

By using the representation theory of g, we can determine defining

relations of (a subclass of) generalized Demazure modules.

o Finally, show that there exist two g[t]-mod. surjections:

W — p*D — U(g[t])/U(g[t]) S" with D a generalized Demazure mod.,
where @, is an auto. on g[t] defined by . (X @ f(t)) = X ® f(t+¢) O
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(2) classical limit of a tensor product

Vi,...,Vy: £d. Uy(Lg)-mod. & Vi®---®@V,: f.d. U,(Lg)-mod.

hméﬂ Vi®---®V, Lg-mod.
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(2) classical limit of a tensor product

Vi,...,Vy: £d. Uy(Lg)-mod. & Vi®---®@V,: f.d. U,(Lg)-mod.
hméﬂ Vi®---®V, Lg-mod.

Vi,...,Vp: fd. Uy(Lg)-mod. hm:q?l Vi,...,Vp: Lg-mod.
£ Vi@ @V, Lg-mod.

In many cases, it happensthat V1 @ - @V, 2Vi @ --- @V, !

i.e. operations of taking tensor prod. and class. lim. are non-commutative!
Q. Can we construct V1 ® --- @V, from Vq,...,V,,?

We solved this question affirmatively when Vi, ..., V), are KR-modules.
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Theorem (N)
Assume the tensor product of KR modules Wit:1(a1) ® - - - @ Wirte (a,)

has a classical limit (sufficient conditions).
(i) If a1(1) = --- = ap(1l) =: c € C*, then
Wit (o) © - @ Wiets(ap) & G2 (WA (ar) + - % Wiets (ap)),

where * is the fusion product explained below.

(i) In the general case, we have

Wit (al) R ® Wipvfp (ap) =~ ®CECX SDZ (k >z<1) W)
sap(1l)=c

fusion prod. For g[t]-modules Vi,...,V, (with some conditions),
their fusion prod. Vi * --- x V}, is defined as a graded analog of tensor
product, and it was defined by Feigin-Loktev as a “graded analog of the

conformal coinvariants” in conformal field theory.
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