量子ループ代数の有限次元表現と古典極限

直井克之 (Katsuyuki Naoi)

東京農工大学 (Tokyo University of Agriculture and Technology)

農工大数学セミナー 2017

2017年3月23日

- **1** Definition of a quantum loop algebra $U_q(\mathcal{L}\mathfrak{g})$ (QLA)
 - motivation, basic properties
- ② fin. dim. $U_q(\mathfrak{g})$ -modules
- **3** fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -modules
- Results
 - (1) classical limits of simple modules
 - (2) classical limits of tensor products

① Definition of a quantum loop algebra $U_a(\mathcal{L}\mathfrak{g})$ (QLA)

- motivation, basic properties
- ② fin. dim. $U_q(\mathfrak{g})$ -modules
- **3** fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -modules
- Results
 - (1) classical limits of simple modules
 - (2) classical limits of tensor products

Results

- **①** Definition of a quantum loop algebra $U_a(\mathcal{L}\mathfrak{g})$ (QLA) - motivation, basic properties
- ② fin. dim. $U_q(\mathfrak{g})$ -modules
- **3** fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -modules
- Results
 - (1) classical limits of simple modules
 - (2) classical limits of tensor products

Plan

- **①** Definition of a quantum loop algebra $U_a(\mathcal{L}\mathfrak{g})$ (QLA)
 - motivation, basic properties
- ② fin. dim. $U_q(\mathfrak{g})$ -modules
- **3** fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -modules
- Results
 - (1) classical limits of simple modules
 - (2) classical limits of tensor products

Definition of a quantum loop algebra $U_q(\mathcal{L}\mathfrak{g})$

 \mathfrak{g} : simple Lie algebra/ \mathbb{C} (e.g. $\mathfrak{sl}_n := \{ X \in \mathrm{Mat}(n, \mathbb{C}) \mid \mathrm{tr} \, X = 0 \}, \ [X, Y] = XY - YX \}$

 $\mathcal{L}\mathfrak{g}:=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$: loop algebra $([X\otimes f,Y\otimes g]=[X,Y]\otimes fg)$

Definition of a quantum loop algebra $U_q(\mathcal{L}\mathfrak{g})$

 $\mathfrak{g}\colon \mathsf{simple}\ \mathsf{Lie}\ \mathsf{algebra}/\mathbb{C}$

(e.g.
$$\mathfrak{sl}_n := \{X \in \operatorname{Mat}(n,\mathbb{C}) \mid \operatorname{tr} X = 0\}, \ [X,Y] = XY - YX$$
)

$$\mathcal{L}\mathfrak{g}:=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\text{: loop algebra}\quad \left([X\otimes f,Y\otimes g]=[X,Y]\otimes fg\right)$$

Quantum loop algebra $U_q(\mathcal{L}\mathfrak{g})$ (QLA)

= the quantized enveloping algebra assoc. with $\mathcal{L}\mathfrak{g}$.

```
\mathfrak a (Lie algebra such as \mathfrak g,\,\mathcal L\mathfrak g)
```

 $\implies U(\mathfrak{a})$: universal enveloping algebra of \mathfrak{a} (associative \mathbb{C} -algebra)

 $\overset{q-\operatorname{deform}}{\Longrightarrow}\ U_q(\mathfrak{a})$: the quantized env. algebra (associative $\mathbb{C}(q)$ -algebra

 \mathfrak{g} : simple Lie algebra/ \mathbb{C}

Definition of a quantum loop algebra $U_q(\mathcal{L}\mathfrak{g})$

(e.g. $\mathfrak{sl}_n := \{X \in \operatorname{Mat}(n,\mathbb{C}) \mid \operatorname{tr} X = 0\}, \ [X,Y] = XY - YX \}$ $\mathcal{L}\mathfrak{g} := \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}] \colon \text{loop algebra} \quad ([X \otimes f,Y \otimes g] = [X,Y] \otimes fg)$ Quantum loop algebra $U_q(\mathcal{L}\mathfrak{g})$ (QLA) $= \text{the quantized enveloping algebra assoc. with } \mathcal{L}\mathfrak{g}.$ $\mathfrak{a} \text{ (Lie algebra such as } \mathfrak{g}, \mathcal{L}\mathfrak{g})$ $\Longrightarrow U(\mathfrak{a}) \colon \text{universal enveloping algebra of } \mathfrak{a} \text{ (associative } \mathbb{C}\text{-algebra})$

 $\stackrel{q-{\sf deform}}{\Longrightarrow}\ U_a(\mathfrak{a})$: the quantized env. algebra (associative $\mathbb{C}(q)$ -algebra)

universal enveloping algebra

Definition of QLA

000000

First step \mathfrak{a} : Lie algebra $\Rightarrow U(\mathfrak{a})$: universal enveloping algebra

$$U(\mathfrak{a}) := T(\mathfrak{a})/\langle XY - YX - [X,Y] \mid X,Y \in \mathfrak{a} \rangle$$

$$(T(\mathfrak{a}):=igoplus_{k=0}^{\infty}T^k(\mathfrak{a})$$
: tensor algebra of \mathfrak{a} ,

i.e. the free (associative) algebra generated by \mathfrak{a})

universal enveloping algebra

Definition of QLA

000000

First step \mathfrak{a} : Lie algebra $\Rightarrow U(\mathfrak{a})$: universal enveloping algebra

$$U(\mathfrak{a}) := T(\mathfrak{a})/\langle XY - YX - [X,Y] \mid X,Y \in \mathfrak{a}\rangle$$

$$(T(\mathfrak{a}):=\bigoplus_{k=0}^{\infty}T^k(\mathfrak{a})$$
: tensor algebra of \mathfrak{a} ,

i.e. the free (associative) algebra generated by \mathfrak{a})

Rem. V is an \mathfrak{a} -module $\Leftrightarrow V$ is a $U(\mathfrak{a})$ -module

(c.f. group algebra $\mathbb{C}[G]$ for a group G)

Second step $U(\mathfrak{a})$: univ. env. alg. $\stackrel{q-\mathsf{defom}}{\Longrightarrow} U_q(\mathfrak{a})$: quantized env. alg.

 $U_q(\mathfrak{a})$ is defined as a q-deformation of $U(\mathfrak{a})$ i.e. " $\lim_{q\to 1} U_q(\mathfrak{a}) = U(\mathfrak{a})$ ".

Second step $U(\mathfrak{a})$: univ. env. alg. $\stackrel{q-\text{detom}}{\Longrightarrow} U_q(\mathfrak{a})$: quantized env. alg.

 $U_q(\mathfrak{a}) \text{ is defined as a } q\text{-deformation of } U(\mathfrak{a}) \text{ i.e. "} \lim_{q \to 1} U_q(\mathfrak{a}) = U(\mathfrak{a}) \text{"}.$

$$\underline{\mathsf{Ex.1}} \ \ \mathfrak{a} = \mathfrak{sl}_2 = \mathbb{C} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \mathbb{C} e \oplus \mathbb{C} h \oplus \mathbb{C} f$$

$$[e, f] = h, \ \ [h, e] = 2e, \ \ [h, f] = -2f$$

 $U(\mathfrak{sl}_2)$: the \mathbb{C} -algebra generated by e,h,f with relations:

$$\begin{split} &ef-fe=h, \quad he-eh=2e, \quad hf-fh=-2f \quad -(*) \\ &\left(\underbrace{\mathsf{Recall}} \ U(\mathfrak{a}) := T(\mathfrak{a})/\langle XY-YX-[X,Y] \mid X,Y \in \mathfrak{a} \rangle \right) \end{split}$$

 $U_q(\mathfrak{sl}_2)$: the $\mathbb{C}(q)$ -algebra gene d by e, q^{+h}, f with relations: $q^h q^{-h} = q^{-h} q^h = 1, \ ef - fe = \frac{q^h - q^{-h}}{q - q^{-1}}, \ q^h e q^{-h} = q^2 e, \ q^h f q^{-h} = q^{-2} f$ $(q = 1 + t, \ q^h = 1 + th, \ t \to 0 \text{ recovers (*)})$

Second step $U(\mathfrak{a})$: univ. env. alg. $\stackrel{q-\text{detom}}{\Longrightarrow} U_q(\mathfrak{a})$: quantized env. alg.

 $U_q(\mathfrak{a}) \text{ i.e. "} \mathrm{lim}_{q \to 1} \, U_q(\mathfrak{a}) = U(\mathfrak{a}) \text{ i.e. "} \mathrm{lim}_{q \to 1} \, U_q(\mathfrak{a}) = U(\mathfrak{a}) \text{"} \, .$

$$\underline{\mathsf{Ex.1}} \ \ \mathfrak{a} = \mathfrak{sl}_2 = \mathbb{C} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \mathbb{C} e \oplus \mathbb{C} h \oplus \mathbb{C} f$$

$$[e, f] = h, \ \ [h, e] = 2e, \ \ [h, f] = -2f$$

 $U(\mathfrak{sl}_2)$: the \mathbb{C} -algebra generated by e,h,f with relations:

$$\begin{split} &ef-fe=h, \quad he-eh=2e, \quad hf-fh=-2f \quad -(*) \\ &\left(\underbrace{\mathsf{Recall}} \ U(\mathfrak{a}) := T(\mathfrak{a})/\langle XY-YX-[X,Y] \mid X,Y \in \mathfrak{a} \rangle \right) \end{split}$$

 $U_q(\mathfrak{sl}_2)$: the $\mathbb{C}(q)$ -algebra gene'd by $e,q^{\pm h},f$ with relations:

$$q^h q^{-h} = q^{-h} q^h = 1, \quad ef - fe = \frac{q^h - q^{-h}}{q - q^{-1}}, \quad q^h e q^{-h} = q^2 e, \quad q^h f q^{-h} = q^{-2} f$$

$$(q - 1 + t, q^h - 1 + th, t \to 0, \text{recovers}(*))$$

Definition of QLA

Second step $U(\mathfrak{a})$: univ. env. alg. $\stackrel{q-\text{defom}}{\Longrightarrow} U_q(\mathfrak{a})$: quantized env. alg.

 $U_q(\mathfrak{a})$ is defined as a q-deformation of $U(\mathfrak{a})$ i.e. " $\lim_{q \to 1} U_q(\mathfrak{a}) = U(\mathfrak{a})$ ".

$$\underline{\mathsf{Ex.1}} \quad \mathfrak{a} = \mathfrak{sl}_2 = \mathbb{C} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \oplus \mathbb{C} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \mathbb{C}e \oplus \mathbb{C}h \oplus \mathbb{C}f$$
$$[e, f] = h, \quad [h, e] = 2e, \quad [h, f] = -2f$$

 $U(\mathfrak{sl}_2)$: the \mathbb{C} -algebra generated by e,h,f with relations:

$$ef - fe = h$$
, $he - eh = 2e$, $hf - fh = -2f$ - (*)
(Recall $U(\mathfrak{a}) := T(\mathfrak{a})/\langle XY - YX - [X,Y] \mid X,Y \in \mathfrak{a} \rangle$)

 $U_q(\mathfrak{sl}_2)$: the $\mathbb{C}(q)$ -algebra gene'd by $e, q^{\pm h}, f$ with relations:

$$q^hq^{-h}=q^{-h}q^h=1, \ \ ef-fe=rac{q^h-q^{-h}}{q-q^{-1}}, \ \ q^heq^{-h}=q^2e, \ \ q^hfq^{-h}=q^{-2}f$$
 $(q=1+t, \ q^h=1+th, \ t o 0 \ {
m recovers} \ (*))$

000000

000000

 $U(\mathcal{L}\mathfrak{sl}_2)$: the \mathbb{C} -algebra generated by $e, h, f, \tilde{e}, \tilde{f}$ with rel.:

- $\circ e, h, f$ satisfy the rel. in $U(\mathfrak{sl}_2), \circ \tilde{e}, h, \tilde{f}$ satisfy the rel. in $U(\mathfrak{sl}_2),$
- $\circ \tilde{e}^3 f 3\tilde{e}^2 f \tilde{e} + 3\tilde{e} f \tilde{e}^2 f \tilde{e}^3 = 0, \quad f^3 \tilde{e} 3f^2 \tilde{e} f + 3f \tilde{e} f^2 \tilde{e} f^3 = 0,$
- \circ The same with \tilde{e}, f replaced by \tilde{f}, e

$$\underline{\mathsf{Ex.2}} \ \ \mathfrak{a} = \mathcal{L}\mathfrak{sl}_2 \ (= \mathfrak{sl}_2 \otimes \mathbb{C}[t^{\pm 1}])$$

 $U(\mathcal{L}\mathfrak{sl}_2)$: the \mathbb{C} -algebra generated by $e, h, f, \tilde{e}, \tilde{f}$ with rel.:

- $\circ e, h, f$ satisfy the rel. in $U(\mathfrak{sl}_2), \circ \tilde{e}, h, \tilde{f}$ satisfy the rel. in $U(\mathfrak{sl}_2), \tilde{e}$
- $\circ \tilde{e}^3 f 3\tilde{e}^2 f \tilde{e} + 3\tilde{e} f \tilde{e}^2 f \tilde{e}^3 = 0$, $f^3 \tilde{e} 3f^2 \tilde{e} f + 3f \tilde{e} f^2 \tilde{e} f^3 = 0$,
- \circ The same with \tilde{e}, f replaced by \tilde{f}, e

 $U_q(\mathcal{L}\mathfrak{sl}_2)$: the $\mathbb{C}(q)$ -alg. gene'd by $e, q^{\pm h}, f, \tilde{e}, \tilde{f}$ with rel.:

- $\circ e, q^{\pm h}, f$ satisfy the rel. in $U_q(\mathfrak{sl}_2), \circ \tilde{e}, q^{\pm h}, \tilde{f}$ satisfy the rel. in $U_q(\mathfrak{sl}_2), \tilde{e}, q^{\pm h}, \tilde{f}$
- $\circ \tilde{e}^3 f [3]\tilde{e}^2 f\tilde{e} + [3]\tilde{e}f\tilde{e}^2 f\tilde{e}^3 = 0$, $f^3 \tilde{e} [3]f^2 \tilde{e}f + [3]f\tilde{e}f^2 \tilde{e}f^3 = 0$ $([3] = q^2 + 1 + q^{-2}),$
- \circ The same with \tilde{e}, f replaced by \tilde{f}, e

$$\underline{\mathsf{Ex}.2} \quad \mathfrak{a} = \mathcal{L}\mathfrak{sl}_2 \, (= \mathfrak{sl}_2 \otimes \mathbb{C}[t^{\pm 1}])$$

000000

 $U(\mathcal{L}\mathfrak{sl}_2)$: the \mathbb{C} -algebra generated by $e,\ h,\ f,\ \tilde{e},\ \tilde{f}$ with rel.:

- $\circ e, h, f$ satisfy the rel. in $U(\mathfrak{sl}_2), \circ \tilde{e}, h, \tilde{f}$ satisfy the rel. in $U(\mathfrak{sl}_2), \tilde{e}$
- $\circ \tilde{e}^3 f 3\tilde{e}^2 f \tilde{e} + 3\tilde{e} f \tilde{e}^2 f \tilde{e}^3 = 0, \quad f^3 \tilde{e} 3f^2 \tilde{e} f + 3f \tilde{e} f^2 \tilde{e} f^3 = 0,$
- \circ The same with \tilde{e}, f replaced by \tilde{f}, e

 $U_q(\mathcal{L}\mathfrak{sl}_2)$: the $\mathbb{C}(q)$ -alg. gene'd by $e, q^{\pm h}, f, \tilde{e}, \tilde{f}$ with rel.:

- $\circ e, q^{\pm h}, f$ satisfy the rel. in $U_q(\mathfrak{sl}_2), \circ \tilde{e}, q^{\pm h}, \tilde{f}$ satisfy the rel. in $U_q(\mathfrak{sl}_2), \tilde{e}, q^{\pm h}, \tilde{f}$
- $\circ \tilde{e}^3 f [3]\tilde{e}^2 f\tilde{e} + [3]\tilde{e}f\tilde{e}^2 f\tilde{e}^3 = 0, f^3 \tilde{e} [3]f^2 \tilde{e}f + [3]f\tilde{e}f^2 \tilde{e}f^3 = 0$ $([3] = a^2 + 1 + a^{-2}).$
- \circ The same with \tilde{e} , f replaced by \tilde{f} , e

 $\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t^{\pm 1}]$ (g. simple Lie alg.) $\rightsquigarrow U_a(\mathcal{L}\mathfrak{g})$: quantum loop alg.

Note $U(\mathfrak{a})$ is a Hopf algebra!

i.e. $\exists \text{coproduct } \Delta \colon U(\mathfrak{a}) \to U(\mathfrak{a}) \otimes U(\mathfrak{a}), \ \exists \text{counit } \varepsilon \colon U(\mathfrak{a}) \to \mathbb{C}$

 \exists antipode $S\colon U(\mathfrak{a})\stackrel{\sim}{ o} U(\mathfrak{a})^{\mathrm{op}}$ with some compatibility.

 $(\Rightarrow$ If V,W are $U(\mathfrak{a})$ -mod., then $V\otimes W$, $\mathbb{C},\ V^*$ become $U(\mathfrak{a})$ -modules.

Theoren

 $U_q(\mathfrak{a})$ has a Hopf algebra structure

That is, $U_q(\mathfrak{a})$ is q-deform. of $U(\mathfrak{a})$ as a Hopf algebra!

Note $U(\mathfrak{a})$ is a Hopf algebra!

i.e. $\exists \text{coproduct } \Delta \colon U(\mathfrak{a}) \to U(\mathfrak{a}) \otimes U(\mathfrak{a}), \ \exists \text{counit } \varepsilon \colon U(\mathfrak{a}) \to \mathbb{C},$

 $^{\exists} \text{antipode } S \colon U(\mathfrak{a}) \overset{\sim}{\to} U(\mathfrak{a})^{\operatorname{op}}$ with some compatibility.

 $(\Rightarrow \mathsf{lf}\ V, W\ \mathsf{are}\ U(\mathfrak{a})\mathsf{-mod.},\ \mathsf{then}\ V\otimes W,\ \mathbb{C},\ V^*\ \mathsf{become}\ U(\mathfrak{a})\mathsf{-modules.})$

 $U_q(\mathfrak{a})$ has a Hopf algebra structure

That is, $U_q(\mathfrak{a})$ is q-deform. of $U(\mathfrak{a})$ as a Hopf algebra!

Note $U(\mathfrak{a})$ is a Hopf algebra!

i.e. $\exists \text{coproduct } \Delta \colon U(\mathfrak{a}) \to U(\mathfrak{a}) \otimes U(\mathfrak{a})$, $\exists \text{counit } \varepsilon \colon U(\mathfrak{a}) \to \mathbb{C}$,

 $^{\exists}$ antipode $S \colon U(\mathfrak{a}) \overset{\sim}{ o} U(\mathfrak{a})^{\mathrm{op}}$ with some compatibility.

 $(\Rightarrow \mathsf{lf}\ V, W\ \mathsf{are}\ U(\mathfrak{a})\mathsf{-mod.},\ \mathsf{then}\ V\otimes W,\ \mathbb{C},\ V^*\ \mathsf{become}\ U(\mathfrak{a})\mathsf{-modules.})$

Theorem

 $U_q(\mathfrak{a})$ has a Hopf algebra structure.

That is, $U_q(\mathfrak{a})$ is q-deform. of $U(\mathfrak{a})$ as a Hopf algebra!

Note $U(\mathfrak{a})$ is a Hopf algebra!

i.e. $\exists \text{coproduct } \Delta \colon U(\mathfrak{a}) \to U(\mathfrak{a}) \otimes U(\mathfrak{a})$, $\exists \text{counit } \varepsilon \colon U(\mathfrak{a}) \to \mathbb{C}$,

 $^{\exists} \text{antipode } S \colon U(\mathfrak{a}) \overset{\sim}{\to} U(\mathfrak{a})^{\operatorname{op}}$ with some compatibility.

 $(\Rightarrow \mathsf{lf}\ V, W\ \mathsf{are}\ U(\mathfrak{a})\mathsf{-mod.},\ \mathsf{then}\ V\otimes W,\ \mathbb{C},\ V^*\ \mathsf{become}\ U(\mathfrak{a})\mathsf{-modules.})$

Theorem

 $U_q(\mathfrak{a})$ has a Hopf algebra structure.

That is, $U_q(\mathfrak{a})$ is q-deform. of $U(\mathfrak{a})$ as a Hopf algebra!

Motivation to the study of fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -mod.

- **1** All the $U_q(\mathcal{L}\mathfrak{g})$ -modules are too large to controll.
- 2 f.d. $U_a(\mathcal{L}\mathfrak{g})$ -mod. have rich structures:

(Recall
$$U_q(\mathcal{L}\mathfrak{g})$$
: Hopf alg. $\Rightarrow V \otimes W \colon U_q(\mathcal{L}\mathfrak{g})$ -mod.)

- 3 have connection to other fields:

- many problems remain unsolved (str. of simple mod., tensor prod.)

Motivation to the study of fin. dim. $U_a(\mathcal{L}\mathfrak{g})$ -mod.

- **1** All the $U_q(\mathcal{L}\mathfrak{g})$ -modules are too large to controll.
- **2** f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. have rich structures:
 - \circ The category of f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. is a monoidal category via \otimes

(Recall
$$U_q(\mathcal{L}\mathfrak{g})$$
: Hopf alg. $\Rightarrow V \otimes W$: $U_q(\mathcal{L}\mathfrak{g})$ -mod.)

- o not semisimple o uncountable simple modules
- 3 have connection to other fields:

- many problems remain unsolved (str. of simple mod., tensor prod.)

Motivation to the study of fin. dim. $U_a(\mathcal{L}\mathfrak{g})$ -mod.

- **1** All the $U_q(\mathcal{L}\mathfrak{g})$ -modules are too large to controll.
- **2** f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. have rich structures:
 - \circ The category of f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. is a monoidal category via \otimes

(Recall
$$U_q(\mathcal{L}\mathfrak{g})$$
: Hopf alg. $\Rightarrow V \otimes W$: $U_q(\mathcal{L}\mathfrak{g})$ -mod.)

- o not semisimple o uncountable simple modules
- have connection to other fields:
 - integrable system

- o geometry on quiver variety (instanton moduli on ALE space)
- o combinatorics, cluster algebra, ..., etc.
- many problems remain unsolved (str. of simple mod., tensor prod.)

Motivation to the study of fin. dim. $U_a(\mathcal{L}\mathfrak{g})$ -mod.

- All the $U_q(\mathcal{L}\mathfrak{g})$ -modules are too large to controll.
- **2** f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. have rich structures:
 - \circ The category of f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. is a monoidal category via \otimes

(Recall $U_q(\mathcal{L}\mathfrak{g})$: Hopf alg. $\Rightarrow V \otimes W$: $U_q(\mathcal{L}\mathfrak{g})$ -mod.)

- have connection to other fields:
- integrable system

- o geometry on quiver variety (instanton moduli on ALE space)
- o combinatorics, cluster algebra, ..., etc.
- many problems remain unsolved (str. of simple mod., tensor prod.) c.f., f.d. $U_q(\mathfrak{g})$ -mod. are deeply understood \leftarrow next slides

Proposition

- ① f.d. $U_q(\mathfrak{g})$ -mod. are semisimple (i.e. $\forall V \cong \bigoplus (\text{simple})$)
- $\{f.d. \text{ simple } U_q(\mathfrak{g})\text{-mod.}\} \stackrel{1-1}{\leftrightarrow} \mathbb{Z}^n_{>0}$ $V_a(\lambda) \leftrightarrow \lambda = (\lambda_1, \dots, \lambda_n)$

fin. dim. $U_q(\mathfrak{g})$ -modules

Proposition |

- **1** f.d. $U_q(\mathfrak{g})$ -mod. are semisimple (i.e. $\forall V \cong \bigoplus (\mathsf{simple})$)
- $\underline{\mathbf{Q}}_{\cdot}$ o Study the structure of simple mod. $V_q(\lambda)$, such as character $\operatorname{ch} V_q(\lambda)$. $(V = \bigoplus_{\alpha} V_{\alpha} : \text{ simultaneous eigensp. dec. w.r.t. a comm. subalg.}$ $\Rightarrow \operatorname{ch} V := \sum_{\alpha} t^{\alpha} \dim V_{\alpha} \in \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}])$
 - \circ Given two simple $U_q(\mathfrak{g})$ -mod. $V_q(\lambda)$, $V_q(\mu)$, determine the multiplicities $[V_q(\lambda) \otimes V_q(\mu) : V_q(\nu)]$ for every ν .

Definition (Classical limit)

 $V \colon \operatorname{f.d.} U_q(\mathfrak{g})\operatorname{-mod.} \overset{\lim_{q \to 1}}{\Longrightarrow} \overline{V} \colon \operatorname{f.d.} U(\mathfrak{g})\operatorname{-mod.} \big(=\mathfrak{g}\operatorname{-mod.}\big)$

 $\left(\underline{\mathsf{Recall}} \quad \text{``lim}_{q \to 1} \, U_q(\mathfrak{g}) = U(\mathfrak{g}) \text{''} \right)$

Proposition

 $\begin{array}{c} \bullet \quad \text{For every } \lambda \in \mathbb{Z}^n_{\geq 0}, \ V(\lambda) := \overline{V_q(\lambda)} \ \text{is a simple \mathfrak{g}-mod., and} \\ V_q(\lambda) \mapsto V(\lambda) \ \text{induces a bij. from } \{\text{f.d. simple $U_q(\mathfrak{g})$-mod.} \\ \text{to } \{\text{f.d. simple \mathfrak{g}-mod.}\} \\ \end{array}$

 $\textbf{2} \ \text{For all } \lambda, \mu, \nu \in \mathbb{Z}^n_{>0},$

$$[V_q(\lambda) \otimes V_q(\mu) : V_q(\nu)] = [V(\lambda) \otimes V(\mu) : V(\nu)$$

combinatorial formulas

Definition (Classical limit)

 $V: \text{ f.d. } U_q(\mathfrak{g})\text{-mod.} \overset{\lim_{q \to 1}}{\Rightarrow} \overline{V}: \text{ f.d. } U(\mathfrak{g})\text{-mod.} (=\mathfrak{g}\text{-mod.})$

(Recall " $\lim_{q\to 1} U_q(\mathfrak{g}) = U(\mathfrak{g})$ ")

Proposition

- ① For every $\lambda \in \mathbb{Z}_{>0}^n$, $V(\lambda) := V_q(\lambda)$ is a simple \mathfrak{g} -mod., and $V_q(\lambda) \mapsto V(\lambda)$ induces a bij. from {f.d. simple $U_q(\mathfrak{g})$ -mod.} to {f.d. simple g-mod.}
- $(\Rightarrow \operatorname{ch} V_a(\lambda) = \operatorname{ch} V(\lambda) \leftarrow \text{Weyl's character formula})$
- **2** For all $\lambda, \mu, \nu \in \mathbb{Z}_{>0}^n$

$$[V_q(\lambda) \otimes V_q(\mu) : V_q(\nu)] = [V(\lambda) \otimes V(\mu) : V(\nu)]$$

combinatorial formulas

Theorem (Chari-Pressley, 95)

 $\{f.d. \text{ simple } U_a(\mathcal{L}\mathfrak{g})\text{-mod.}\}$

$$\stackrel{\text{1-1}}{\leftrightarrow} \left\{ \boldsymbol{\pi} = (\pi_1(u), \dots, \pi_n(u)) \mid \pi_k(u) \in 1 + u\mathbb{C}(q)[u] \right\}$$

Denote the simples by $L_q(\pi)$ (π are called the Drinfeld polynomials).

fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -modules

Rem. f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. are not semisimple.

Theorem (Chari-Pressley, 95)

 $\{f.d. \text{ simple } U_q(\mathcal{L}\mathfrak{g})\text{-mod.}\}$

$$\stackrel{\text{1-1}}{\leftrightarrow} \left\{ \boldsymbol{\pi} = (\pi_1(u), \dots, \pi_n(u)) \mid \pi_k(u) \in 1 + u\mathbb{C}(q)[u] \right\}$$

Denote the simples by $L_q(\pi)$ (π are called the Drinfeld polynomials).

fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -modules

Rem. f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. are not semisimple.

- Q. (i) Study the structure of $L_q(\pi)$.
 - (ii) Study $L_q(\pi) \otimes L_q(\pi')$.

Rem. By the geometric rep. theory on quiver varieties, H. Nakajima has obtained an algorithm to give characters (or q-characters) of every $L_q(\pi)$. The algorithm is very complicated, however, and a closed formula is still to be established (at least to some "good class" of simple modules)

Theorem (Chari-Pressley, 95)

 $\{f.d. \text{ simple } U_q(\mathcal{L}\mathfrak{g})\text{-mod.}\}$

$$\stackrel{\text{1-1}}{\leftrightarrow} \left\{ \boldsymbol{\pi} = (\pi_1(u), \dots, \pi_n(u)) \mid \pi_k(u) \in 1 + u\mathbb{C}(q)[u] \right\}$$

Denote the simples by $L_q(\pi)$ (π are called the Drinfeld polynomials).

fin. dim. $U_q(\mathcal{L}\mathfrak{g})$ -modules

Rem. f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. are not semisimple.

- Q. (i) Study the structure of $L_q(\pi)$.
 - (ii) Study $L_q(\pi) \otimes L_q(\pi')$.

Rem. By the geometric rep. theory on quiver varieties, H. Nakajima has obtained an algorithm to give characters (or q-characters) of every $L_q(\pi)$. The algorithm is very complicated, however, and a closed formula is still to be established (at least to some "good class" of simple modules).

classical limits of f.d. $U_q(\mathcal{L}\mathfrak{g})$ -modules

V: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. wih some conditions (e.g. almost all simples)

$$\overset{\lim_{q\to 1}}{\to} \overline{V} \colon U(\mathcal{L}\mathfrak{g})\text{-mod.} = \mathcal{L}\mathfrak{g}\text{-mod}.$$

Goal Study the structure of V by observing \overline{V} instead.

good point
$$\circ U(\mathcal{L}\mathfrak{g})$$
 is a much simpler alg. than $U_q(\mathcal{L}\mathfrak{g})$.

$$\circ \ \mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}] = \mathcal{L}\mathfrak{g} \text{: Lie subalg., } U_q(\mathfrak{g}) \subseteq U_q(\mathcal{L}\mathfrak{g}) \text{: subalg.,}$$
 and $V \cong_{U_q(\mathfrak{g})} \bigoplus_{\lambda} V_q(\lambda)^{\oplus m_{\lambda}} \Leftrightarrow \overline{V} \cong_{\mathfrak{g}} \bigoplus_{\lambda} V(\lambda)^{\oplus m_{\lambda}}$,

the $U_q(\mathfrak{g})$ -module structure (in particular, $\operatorname{ch} V = \operatorname{ch} \overline{V}$)

bad point

f.d. $\mathcal{L}\mathfrak{g}$ -modules are not semisimple, and even V is simple, \overline{V} is rarely simple \Rightarrow need to treat a nonsimple, indec. $\mathcal{L}\mathfrak{g}$ -mod.

classical limits of f.d. $U_q(\mathcal{L}\mathfrak{g})$ -modules

V: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. wih some conditions (e.g. almost all simples)

$$\stackrel{\lim_{q\to 1}}{\to} \overline{V}: \ U(\mathcal{L}\mathfrak{g})\text{-mod.} = \mathcal{L}\mathfrak{g}\text{-mod.}$$

 $\underline{\mathsf{Goal}}$ Study the structure of V by observing \overline{V} instead.

good point $\circ U(\mathcal{L}\mathfrak{g})$ is a much simpler alg. than $U_q(\mathcal{L}\mathfrak{g})$.

$$\circ \ \mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}] = \mathcal{L}\mathfrak{g} \text{: Lie subalg., } U_q(\mathfrak{g}) \subseteq U_q(\mathfrak{g})$$

that is, taking the classical limit does not loose any information of the $U(\mathfrak{g})$ module structure (in particular, $\mathfrak{gh} V = \mathfrak{gh} \overline{V}$)

bad point

f.d. $\mathcal{L}\mathfrak{g}$ -modules are not semisimple, and even V is simple, \overline{V} is rarely simple \Rightarrow need to treat a nonsimple, indec. $\mathcal{L}\mathfrak{g}$ -mod.

classical limits of f.d. $U_q(\mathcal{L}\mathfrak{g})$ -modules

V: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. wih some conditions (e.g. almost all simples)

$$\overset{\lim_{q \to 1}}{\to} \overline{V}$$
: $U(\mathcal{L}\mathfrak{g})$ -mod. = $\mathcal{L}\mathfrak{g}$ -mod.

 $\underline{\mathsf{Goal}}$ Study the structure of V by observing \overline{V} instead.

good point $\circ U(\mathcal{L}\mathfrak{g})$ is a much simpler alg. than $U_q(\mathcal{L}\mathfrak{g})$.

$$\circ \ \mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}] = \mathcal{L}\mathfrak{g} \text{: Lie subalg., } U_q(\mathfrak{g}) \subseteq U_q(\mathcal{L}\mathfrak{g}) \text{: subalg.,}$$
 and $V \cong_{U_q(\mathfrak{g})} \bigoplus_{\lambda} V_q(\lambda)^{\oplus m_{\lambda}} \Leftrightarrow \overline{V} \cong_{\mathfrak{g}} \bigoplus_{\lambda} V(\lambda)^{\oplus m_{\lambda}},$

that is, taking the classical limit does not loose any information of the $U_q(\mathfrak{g})$ -module structure (in particular, $\operatorname{ch} V = \operatorname{ch} \overline{V}$)

bad point

f.d. $\mathcal{L}\mathfrak{g}$ -modules are not semisimple, and even V is simple, \overline{V} is rarely simple \Rightarrow need to treat a nonsimple, indec. $\mathcal{L}\mathfrak{g}$ -mod.

classical limits of f.d. $U_q(\mathcal{L}\mathfrak{g})$ -modules

V: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. wih some conditions (e.g. almost all simples)

$$\overset{\lim_{q \to 1}}{\to} \overline{V}$$
: $U(\mathcal{L}\mathfrak{g})$ -mod. = $\mathcal{L}\mathfrak{g}$ -mod.

Goal Study the structure of V by observing \overline{V} instead.

good point $\circ U(\mathcal{L}\mathfrak{g})$ is a much simpler alg. than $U_q(\mathcal{L}\mathfrak{g})$.

$$\circ \mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t^{\pm 1}] = \mathcal{L}\mathfrak{g} \colon \text{Lie subalg., } U_q(\mathfrak{g}) \subseteq U_q(\mathcal{L}\mathfrak{g}) \colon \text{subalg.,}$$
 and $V \cong_{U_q(\mathfrak{g})} \bigoplus_{\lambda} V_q(\lambda)^{\oplus m_{\lambda}} \Leftrightarrow \overline{V} \cong_{\mathfrak{g}} \bigoplus_{\lambda} V(\lambda)^{\oplus m_{\lambda}},$

that is, taking the classical limit does not loose any information of the $U_q(\mathfrak{g})$ -module structure (in particular, $\operatorname{ch} V = \operatorname{ch} \overline{V}$)

bad point

f.d. $\mathcal{L}\mathfrak{g}$ -modules are not semisimple, and even V is simple, \overline{V} is rarely simple \Rightarrow need to treat a nonsimple, indec. $\mathcal{L}\mathfrak{g}$ -mod.

(1) classical limits of simple modules

Strategy

Definition of QLA

Given V: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow} \overline{V}$: $U(\mathcal{L}\mathfrak{g})$ -mod. $(=\mathcal{L}\mathfrak{g}$ -mod.)

Basically, the study of \overline{V} is divided into the following two steps:

- ① V is generated by a distinguished vector called an ℓ -highest weight vector (ℓ -h.w.v.) v. The first step is to find a "good" defining relations of v, i.e., find a "good" subset $S \subset U(\mathcal{L}\mathfrak{g})$ s.t. $\mathrm{Ann}(v) = U(\mathcal{L}\mathfrak{g})S \ (\Leftrightarrow U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})S \overset{\sim}{\to} \overline{V})$.
- 2 Using $U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})$ $S\cong \overline{V}$, determine its character, simple g-module dec., etc.

As a consequence, we obtain the information on the structure of V such as character, simple $U_q(\mathfrak{g})$ -mod. dec., etc.

Strategy

Given V: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow} \overline{V}$: $U(\mathcal{L}\mathfrak{g})$ -mod. $(=\mathcal{L}\mathfrak{g}$ -mod.)

Basically, the study of \overline{V} is divided into the following two steps:

- 2 Using $U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})$ $S\cong \overline{V}$, determine its character, simple g-module dec., etc.

As a consequence, we obtain the information on the structure of V such as character, simple $U_q(\mathfrak{g})$ -mod. dec., etc.

(1) classical limits of simple modules

Strategy

Definition of QLA

Given V: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow} \overline{V}$: $U(\mathcal{L}\mathfrak{g})$ -mod. $(=\mathcal{L}\mathfrak{g}$ -mod.)

Basically, the study of \overline{V} is divided into the following two steps:

- ① \overline{V} is generated by a distinguished vector called an ℓ -highest weight vector (ℓ -h.w.v.) v. The first step is to find a "good" defining relations of v, i.e., find a "good" subset $S \subset U(\mathcal{L}\mathfrak{g})$ s.t. $\mathrm{Ann}(v) = U(\mathcal{L}\mathfrak{g})S \ (\Leftrightarrow U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})S \overset{\sim}{\to} \overline{V})$.
- $\textbf{ Using } U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g}) \, S \cong \overline{V} \text{, determine its character, simple } \\ \mathfrak{g}\text{-module dec., etc.}$

As a consequence, we obtain the information on the structure of V such as character, simple $U_q(\mathfrak{g})$ -mod. dec., etc.

(1) classical limits of simple modules

Strategy

Definition of QLA

Given V: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\stackrel{\lim_{q\to 1}}{\Rightarrow} \overline{V}$: $U(\mathcal{L}\mathfrak{g})$ -mod. $(=\mathcal{L}\mathfrak{g}$ -mod.)

Basically, the study of \overline{V} is divided into the following two steps:

- **1** \overline{V} is generated by a distinguished vector called an ℓ -highest weight vector $(\ell-h.w.v.)$ v. The first step is to find a "good" defining relations of v, i.e., find a "good" subset $S \subset U(\mathcal{L}\mathfrak{g})$ s.t. Ann $(v) = U(\mathcal{L}\mathfrak{q}) S \quad (\Leftrightarrow U(\mathcal{L}\mathfrak{q})/U(\mathcal{L}\mathfrak{q}) S \xrightarrow{\sim} \overline{V}).$
- ② Using $U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})$ $S\cong \overline{V}$, determine its character, simple g-module dec., etc.

As a consequence, we obtain the information on the structure of Vsuch as character, simple $U_q(\mathfrak{g})$ -mod. dec., etc.

Notation and Definition

Recall

Definition of QLA

$$\{\text{f.d. simple } U_q(\mathcal{L}\mathfrak{g})\text{-mod.}\} \stackrel{\text{1-1}}{\leftrightarrow} \{(\pi_1(u),\ldots,\pi_n(u)) \mid \pi_k(0)=1\} =: \mathcal{D}$$

For
$$\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}_{>0}^n$$
, $\mathcal{D}^{\lambda} := \{(\pi_1, \dots, \pi_n) \mid \deg \pi_k = \lambda_k\} \subseteq \mathcal{D}$

Fact If $\pi \in \mathcal{D}^{\lambda}$, $L_q(\pi) \cong_{U_q(\mathfrak{g})} V_q(\lambda) \oplus$ (smaller simple $U_q(\mathfrak{g})$ -mod.).

Definition

For $\lambda \in \mathbb{Z}_{\geq 0}^n$, $L_q(\pi)$ is a minimal affinization with weight $\lambda \in \mathbb{Z}_{\geq 0}^n$ smallest dimensional among $\{L_q(\pi) \mid \pi \in \mathcal{D}^{\lambda}\}$.

The case $\lambda=\ell e_i=(0,\ldots,0,\ell,0,\ldots,0)$ $(1\leq i\leq n,\ell\in\mathbb{Z}_{>0})$ is particularly important in integrable system. These special min. affiniz. are called Kirillov-Reshetikhin (KR) modules with weight ℓe_i

Notation and Definition

Recall

$$\{\text{f.d. simple } U_q(\mathcal{L}\mathfrak{g})\text{-mod.}\} \stackrel{\text{1-1}}{\leftrightarrow} \{(\pi_1(u),\ldots,\pi_n(u)) \mid \pi_k(0)=1\} =: \mathcal{D}$$

For
$$\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}_{\geq 0}^n$$
, $\mathcal{D}^{\lambda} := \{(\pi_1, \dots, \pi_n) \mid \deg \pi_k = \lambda_k\} \subseteq \mathcal{D}$

Fact If $\pi \in \mathcal{D}^{\lambda}$, $L_q(\pi) \cong_{U_q(\mathfrak{g})} V_q(\lambda) \oplus \text{(smaller simple } U_q(\mathfrak{g})\text{-mod.)}$.

Definition

For $\lambda \in \mathbb{Z}_{>0}^n$, $L_q(\pi)$ is a minimal affinization with weight λ

 $\overset{\mathsf{def}}{\Leftrightarrow}$ smallest dimensional among $\{L_q(\boldsymbol{\pi}) \mid \boldsymbol{\pi} \in \mathcal{D}^{\lambda}\}.$

Recall

$$\{\mathsf{f.d.\ simple}\ U_q(\mathcal{L}\mathfrak{g})\text{-mod.}\}\overset{\mathsf{1-1}}{\leftrightarrow}\{(\pi_1(u),\ldots,\pi_n(u))\mid \pi_k(0)=1\}=:\mathcal{D}$$

For
$$\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}_{\geq 0}^n$$
, $\mathcal{D}^{\lambda} := \{(\pi_1, \dots, \pi_n) \mid \deg \pi_k = \lambda_k\} \subseteq \mathcal{D}$

Fact If $\pi \in \mathcal{D}^{\lambda}$, $L_q(\pi) \cong_{U_q(\mathfrak{g})} V_q(\lambda) \oplus$ (smaller simple $U_q(\mathfrak{g})$ -mod.).

Definition

For $\lambda \in \mathbb{Z}_{\geq 0}^n$, $L_q(\pi)$ is a minimal affinization with weight λ

 $\overset{\mathsf{def}}{\Leftrightarrow}$ smallest dimensional among $\{L_a(\boldsymbol{\pi}) \mid \boldsymbol{\pi} \in \mathcal{D}^{\lambda}\}$.

The case $\lambda=\ell e_i=(0,\dots,0,\ell,0,\dots,0)$ $(1\leq i\leq n,\ell\in\mathbb{Z}_{>0})$ is particularly important in integrable system. These special min. affiniz. are called Kirillov-Reshetikhin (KR) modules with weight ℓe_i

classical limits of Kirillov-Reshetikhin module

Let $\{W^{i,\ell}(a) \mid a \in \mathbb{C}(q)^{\times}\}$ denote the KR modules with weight ℓe_i .

Study of KR mod. in integrable system

 \rightsquigarrow conjectural formula for simple $U_q(\mathfrak{g})$ -mod. dec.:

$$W^{i,\ell}(a) \cong_{U_q(\mathfrak{g})} \bigoplus V_q(\lambda)^{\oplus m_{i,\ell}(\lambda)}$$
 (KR conjectrue)

Theorem (Chari, 01)

Assume that g is of type A_n , B_n , C_n or D_n , and $v \in W^{i,\ell}(a)$ is ℓ -h.w.v

- (i) Ann $(v) = U(\mathcal{L}\mathfrak{g}) S$ with a certain subset S of elements in $U(\mathcal{L}\mathfrak{g})$ $(S = \mathfrak{n}_{+}[t] \cup (\mathfrak{h} \otimes (t a(1))) \cup \{f_{i}^{\ell+1}, f_{j} \ (j \neq i), f_{i} \otimes t\})$
- (ii) KR conj. holds.

Recall Simple Lie algebras are classified into types

 A_n (\mathfrak{sl}_{n+1}), B_n (\mathfrak{so}_{2n+1}), C_n (\mathfrak{sp}_{2n}), D_n (\mathfrak{so}_{2n}), E_6 , E_7 , E_8 , F_4 , G_2 .

classical limits of Kirillov-Reshetikhin module

Let $\{W^{i,\ell}(a) \mid a \in \mathbb{C}(q)^{\times}\}$ denote the KR modules with weight ℓe_i .

Study of KR mod. in integrable system

 \rightsquigarrow conjectural formula for simple $U_q(\mathfrak{g})$ -mod. dec.:

$$W^{i,\ell}(a) \cong_{U_q(\mathfrak{q})} \bigoplus V_q(\lambda)^{\oplus m_{i,\ell}(\lambda)}$$
 (KR conjectrue)

Theorem (Chari, 01)

Assume that $\mathfrak g$ is of type A_n , B_n , C_n or D_n , and $v \in W^{i,\ell}(a)$ is ℓ -h.w.v.

- (i) $\operatorname{Ann}(v) = U(\mathcal{L}\mathfrak{g}) S$ with a certain subset S of elements in $U(\mathcal{L}\mathfrak{g})$ $(S = \mathfrak{n}_+[t] \cup (\mathfrak{h} \otimes (t a(1))) \cup \{f_i^{\ell+1}, f_i \ (i \neq i), f_i \otimes t\})$
- (ii) KR conj. holds.

Recall Simple Lie algebras are classified into types

 A_n (\mathfrak{sl}_{n+1}), B_n (\mathfrak{so}_{2n+1}), C_n (\mathfrak{sp}_{2n}), D_n (\mathfrak{so}_{2n}), E_6, E_7, E_8 , F_4 , G_2 .

(i)
$$\operatorname{Ann}(v) = U(\mathcal{L}\mathfrak{g}) S \iff U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g}) S \stackrel{\sim}{\to} \overline{V}$$

(ii) KR conj. holds.
$$(W^{i,\ell}(a) \cong_{U_q(\mathfrak{g})} \bigoplus V_q(\lambda)^{\oplus m_{i,\ell}(\lambda)})$$

sketch of proof

Definition of QLA

Fact If g is of type ABCD, $m_{i,\ell}(\lambda) < 1$ for any λ .

- $\circ U(\mathcal{L}\mathfrak{q})/U(\mathcal{L}\mathfrak{q}) S \twoheadrightarrow \overline{V}$ is easy to prove.
- \circ Prove $[U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g}) S: V(\lambda)] \leq m_{i,\ell}(\lambda)$.
- \circ Prove $[W^{i,\ell}(a):V_a(\lambda)] \geq m_{i,\ell}(\lambda)$ (hard calculation in $U_q(\mathcal{L}\mathfrak{g})$) \square

It seems difficult to apply this proof to wider class of simple modules!

(i)
$$\operatorname{Ann}(v) = U(\mathcal{L}\mathfrak{g}) S \iff U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g}) S \stackrel{\sim}{\to} \overline{V}$$

(ii) KR conj. holds.
$$(W^{i,\ell}(a) \cong_{U_q(\mathfrak{q})} \bigoplus V_q(\lambda)^{\oplus m_{i,\ell}(\lambda)})$$

sketch of proof

Fact If g is of type ABCD, $m_{i,\ell}(\lambda) \leq 1$ for any λ .

- $\circ U(\mathcal{L}\mathfrak{q})/U(\mathcal{L}\mathfrak{q}) S \twoheadrightarrow \overline{V}$ is easy to prove.
- \circ Prove $[U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g}) S: V(\lambda)] \leq m_{i,\ell}(\lambda)$.
- \circ Prove $[W^{i,\ell}(a):V_a(\lambda)] \geq m_{i,\ell}(\lambda)$ (hard calculation in $U_q(\mathcal{L}\mathfrak{g})$) \square

It seems difficult to apply this proof to wider class of simple modules!

Rem. KR conj. has been proved in general types using the theory of q-characters.

class, lim. of minimal affinizations

Theorem (N, Li-N, '13-'15)

Assume g is of type ABCD or G_2 , and let v be an ℓ -h.w.v. of a minimal affinization W with weight $\lambda \in \mathbb{Z}_{>0}^n$.

Then there exists a "good" subset $S \subseteq U(\mathcal{L}\mathfrak{g})$ s.t. $\mathrm{Ann}(v) = U(\mathcal{L}\mathfrak{g}) S$.

Definition of QLA

- \bullet a Jacobi-Trudi type character formula in type ABCD, which
- 2 a polyhedral multiplicity formula in type G_2 , which expresses

Theorem (N, Li-N, '13-'15)

Assume g is of type ABCD or G_2 , and let v be an ℓ -h.w.v. of a minimal affinization W with weight $\lambda \in \mathbb{Z}_{>0}^n$.

Then there exists a "good" subset $S \subseteq U(\mathcal{L}\mathfrak{g})$ s.t. $\mathrm{Ann}(v) = U(\mathcal{L}\mathfrak{g}) S$.

Corollary

By analyzing $U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})$ S, we obtain:

- \bullet a Jacobi-Trudi type character formula in type ABCD, which expresses the character as a determinant of a matrix (new in CD).
- o a polyhedral multiplicity formula in type G_2 , which expresses $[W:V_a(\mu)]$ as # of the lattice pts in a polyhedron.

<u>Def.</u> $\mathfrak{g}[t] = \mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$: current algebra.

sketch of the poof of $U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})$ $S\stackrel{\sim}{\to} \overline{W}$

- $\circ U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g}) S \twoheadrightarrow \overline{W}$ is easy.
- \circ It is enough to show \exists surj. $\overline{W} \to U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})S$

$$\Leftrightarrow {}^\exists \mathfrak{g}[t]\text{-mod. surj. }\overline{W} \twoheadrightarrow U(\mathfrak{g}[t])/U(\mathfrak{g}[t])S' \text{, where } S' = U(\mathfrak{g}[t]) \cap S.$$

We use the theory of the affine Lie algebra $\widehat{\mathfrak{g}}$ to prove this!

$$\widehat{\mathfrak{g}}=\mathfrak{g}\otimes \mathbb{C}[t,t^{-1}]\oplus \mathbb{C}K$$
: affine Lie algebra

$$([X \otimes f + aK, Y \otimes g + bK] = [X, Y] \otimes fg + K(X, Y) \operatorname{Res}_{t=0} g \cdot df / dt)$$

Definition of QLA

 $\underline{\mathsf{Def.}} \ \ \mathfrak{g}[t] = \mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}] \text{: current algebra}.$

sketch of the poof of $U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})$ $S\stackrel{\sim}{ o} \overline{W}$

- $\circ~U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})~S \twoheadrightarrow \overline{W}$ is easy.
- \circ It is enough to show $^\exists$ surj. $\overline{W} woheadrightarrow U(\mathcal{L}\mathfrak{g})/U(\mathcal{L}\mathfrak{g})\,S$

$$\Leftrightarrow {}^{\exists}\mathfrak{g}[t]\text{-mod. surj. }\overline{W} \twoheadrightarrow U(\mathfrak{g}[t])/U(\mathfrak{g}[t])S'\text{, where }S'=U(\mathfrak{g}[t])\cap S.$$

We use the theory of the affine Lie algebra $\widehat{\mathfrak{g}}$ to prove this!

$$\widehat{\mathfrak{g}}=\mathfrak{g}\otimes \mathbb{C}[t,t^{-1}]\oplus \mathbb{C}K$$
: affine Lie algebra

$$([X \otimes f + aK, Y \otimes g + bK] = [X, Y] \otimes fg + K(X, Y) \operatorname{Res}_{t=0} g \cdot df/dt)$$

Rem. $\mathfrak{g}[t]$ is a Lie subalgebra of $\widehat{\mathfrak{g}}$, but $\mathcal{L}\mathfrak{g}$ is not!

 $\widehat{\mathfrak{g}}$ has a good class of simple modules $\{\widehat{V}(\Lambda) \mid \Lambda \in \mathbb{Z}^{n+1}_{\geq 0}\}$ called integrable highest weight modules.

Definition

A $\mathfrak{g}[t]$ -submodule $U(\mathfrak{g}[t])(v_{w_1\Lambda_1}\otimes\cdots\otimes v_{w_p\Lambda_p})\subseteq \widehat{V}(\Lambda_1)\otimes\cdots\otimes\widehat{V}(\Lambda_p)$ is called a generalized Demazure module, where $\{v_{w\Lambda}\mid w\in\widehat{W}\}$ are distinguished vectors in $\widehat{V}(\Lambda)$ called extremal weight vectors.

Theorem (Joseph, Lakshmibai-Littelmann-Magyar)

By using the representation theory of $\widehat{\mathfrak{g}}$, we can determine defining relations of (a subclass of) generalized Demazure modules.

 \circ Finally, show that there exist two $\mathfrak{g}[t]$ -mod. surjections:

 $\overline{W} \to \varphi_c^* D \to U(\mathfrak{g}[t])/U(\mathfrak{g}[t]) S'$ with D a generalized Demazure mod., where φ_c is an auto, on $\mathfrak{g}[t]$ defined by $\varphi_c(X \otimes f(t)) = X \otimes f(t+c)$

 $\widehat{\mathfrak{g}}$ has a good class of simple modules $\{\widehat{V}(\Lambda)\mid \Lambda\in\mathbb{Z}^{n+1}_{\geq 0}\}$ called integrable highest weight modules.

Definition

A $\mathfrak{g}[t]$ -submodule $U(\mathfrak{g}[t])(v_{w_1\Lambda_1}\otimes\cdots\otimes v_{w_p\Lambda_p})\subseteq \widehat{V}(\Lambda_1)\otimes\cdots\otimes\widehat{V}(\Lambda_p)$ is called a generalized Demazure module, where $\{v_{w\Lambda}\mid w\in\widehat{W}\}$ are distinguished vectors in $\widehat{V}(\Lambda)$ called extremal weight vectors.

Theorem (Joseph, Lakshmibai-Littelmann-Magyar)

By using the representation theory of $\widehat{\mathfrak{g}}$, we can determine defining relations of (a subclass of) generalized Demazure modules.

 \circ Finally, show that there exist two $\mathfrak{g}[t]$ -mod. surjections:

 $\overline{W} \twoheadrightarrow \varphi_c^* D \twoheadrightarrow U(\mathfrak{g}[t])/U(\mathfrak{g}[t]) \, S'$ with D a generalized Demazure mod., where φ_c is an auto. on $\mathfrak{g}[t]$ defined by $\varphi_c(X \otimes f(t)) = X \otimes f(t+c)$

Definition of QLA

$$V_1,\dots,V_p$$
: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q o 1}}{\Rightarrow}$ $\overline{V_1},\dots,\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod. $\overset{\otimes}{\Rightarrow}$ $\overline{V_1}\otimes\dots\otimes\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod.

Definition of QLA

$$V_1,\ldots,V_p$$
: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow}$ $\overline{V_1},\ldots,\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod. $\overset{\otimes}{\Rightarrow}$ $\overline{V_1}\otimes\cdots\otimes\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod.

Definition of QLA

$$V_1,\dots,V_p$$
: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\boxtimes}{\Rightarrow} V_1\otimes\dots\otimes V_p$: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow} \overline{V_1\otimes\dots\otimes V_p}$: $\mathcal{L}\mathfrak{g}$ -mod.

$$V_1,\ldots,V_p$$
: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow}$ $\overline{V_1},\ldots,\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod. $\overset{\otimes}{\Rightarrow}$ $\overline{V_1}\otimes\cdots\otimes\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod.

In many cases, it happens that $\overline{V_1 \otimes \cdots \otimes V_p} \ncong \overline{V_1} \otimes \cdots \otimes \overline{V_n}$! i.e. operations of taking tensor prod. and class. lim. are non-commutative!

Definition of QLA

$$V_1,\dots,V_p$$
: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\otimes}{\Rightarrow} V_1\otimes\dots\otimes V_p$: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow} \overline{V_1\otimes\dots\otimes V_p}$: $\mathcal{L}\mathfrak{g}$ -mod.

$$V_1,\ldots,V_p$$
: f.d. $U_q(\mathcal{L}\mathfrak{g})$ -mod. $\overset{\lim_{q\to 1}}{\Rightarrow}$ $\overline{V_1},\ldots,\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod. $\overset{\otimes}{\Rightarrow}$ $\overline{V_1}\otimes\cdots\otimes\overline{V_p}$: $\mathcal{L}\mathfrak{g}$ -mod.

In many cases, it happens that $\overline{V_1 \otimes \cdots \otimes V_n} \ncong \overline{V_1} \otimes \cdots \otimes \overline{V_n}$! i.e. operations of taking tensor prod. and class. lim. are non-commutative!

Q. Can we construct $\overline{V_1 \otimes \cdots \otimes V_n}$ from $\overline{V_1}, \ldots, \overline{V_n}$?

We solved this question affirmatively when V_1, \ldots, V_p are KR-modules.

Theorem (N)

Definition of QLA

Assume the tensor product of KR modules $W^{i_1,\ell_1}(a_1)\otimes \cdots \otimes W^{i_p,\ell_p}(a_n)$ has a classical limit (∃sufficient conditions).

- (i) If $a_1(1) = \cdots = a_n(1) =: c \in \mathbb{C}^{\times}$, then $\overline{W^{i_1,\ell_1}(a_1)\otimes\cdots\otimes W^{i_p,\ell_p}(a_n)}\cong\varphi_c^*(\overline{W^{i_1,\ell_1}(a_1)}*\cdots*\overline{W^{i_p,\ell_p}(a_n)}),$
 - where * is the fusion product explained below.
- (ii) In the general case, we have

$$\overline{W^{i_1,\ell_1}(a_1)\otimes \cdots \otimes W^{i_p,\ell_p}(a_p)} \cong \bigotimes_{c\in\mathbb{C}^\times} \varphi_c^* \left(\underset{k; \, a_k(1)=c}{*} \overline{W^{i_k,\ell_k}(a_k)} \right).$$

fusion prod. For $\mathfrak{g}[t]$ -modules V_1, \ldots, V_p (with some conditions), their fusion prod. $V_1 * \cdots * V_p$ is defined as a graded analog of tensor product, and it was defined by Feigin-Loktev as a "graded analog of the conformal coinvariants" in conformal field theory.