Classical limits of minimal affinizations and generalized Demazure modules

Katsuyuki Naoi

Kavli IPMU

May 22nd, 2012

Abstract

Problem

Study the structures of finite-dimensional simple modules over a quantum loop algebra $U_q(L\mathfrak{g})$.

Finite dimensional simple modules over $U_q(L\mathfrak{g})$ are quite many. Hence it seems too ambitious to solve this problem in general (at least for now).

In this talk, we concentrate on some distinguished subclass (minimal affinizations).

Abstract

Problem

Study the structures of finite-dimensional simple modules over a quantum loop algebra $U_a(L\mathfrak{g})$.

Finite dimensional simple modules over $U_q(L\mathfrak{g})$ are quite many. Hence it seems too ambitious to solve this problem in general (at least for now).

In this talk, we concentrate on some distinguished subclass (minimal affinizations).

Abstract

Problem

Study the structures of finite-dimensional simple modules over a quantum loop algebra $U_a(L\mathfrak{g})$.

Finite dimensional simple modules over $U_q(L\mathfrak{g})$ are quite many. Hence it seems too ambitious to solve this problem in general (at least for now).

In this talk, we concentrate on some distinguished subclass (minimal affinizations).

How to study?

```
M: Minimal affinization of U_q(L\mathfrak{g})
```

$$\overset{\text{assical limit}}{\Longrightarrow} M_1 \colon U(L\mathfrak{g})\text{-module } (L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}])$$

$$\overset{\tau_d^* \circ \mathsf{Res}}{\Longrightarrow} \bar{M} \colon U(\mathfrak{g} \otimes \mathbb{C}[t])\text{-module } (\mathsf{Restricted limit})$$

$$\overset{\mathsf{ch}}{\to} \mathbf{ch} M = \mathbf{ch} \bar{M}$$

 $ar{M}$ is isomorphic to another $U(\mathfrak{g}\otimes \mathbb{C}[t])$ -module (generalized Demazure module)

 \Longrightarrow obtain $\operatorname{ch} \bar{M} \ (\Leftrightarrow \operatorname{ch} M)$

How to study?

M: Minimal affinization of $U_q(L\mathfrak{g})$

$$\overset{\text{classical limit}}{\Longrightarrow} M_1 \colon U(L\mathfrak{g})\text{-module } (L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}])$$

$$\overset{\tau_a^* \circ \mathrm{Res}}{\Longrightarrow} \bar{M} \colon U(\mathfrak{g} \otimes \mathbb{C}[t])\text{-module (Restricted limit)}$$

$$\Leftrightarrow \operatorname{ch} M = \operatorname{ch} \bar{M}$$

 $ar{M}$ is isomorphic to another $U(\mathfrak{g}\otimes \mathbb{C}[t])$ -module (generalized Demazure module)

$$\Longrightarrow$$
 obtain $\operatorname{ch} \bar{M} \ (\Leftrightarrow \operatorname{ch} M)$

How to study?

M: Minimal affinization of $U_q(L\mathfrak{g})$

classical limit
$$\longrightarrow M_1: U(L\mathfrak{g})$$
-module $(L\mathfrak{g}=\mathfrak{g}\otimes \mathbb{C}[t,t^{-1}])$

$$\xrightarrow{\tau_a^*\circ \mathrm{Res}} \bar{M}: U(\mathfrak{g}\otimes \mathbb{C}[t])$$
-module (Restricted limit)
$$\diamondsuit \operatorname{ch} M = \operatorname{ch} \bar{M}$$

 $ar{M}$ is isomorphic to another $U(\mathfrak{g}\otimes \mathbb{C}[t])$ -module (generalized Demazure module)

 \implies obtain $\operatorname{ch} \bar{M} \ (\Leftrightarrow \operatorname{ch} M)$

finite-dimensional $U_q(\mathfrak{g})$ -modules

g: simple Lie algebra,
$$I = \{1, ..., n\}$$
: index set, $\{e_i, h_i, f_i \mid i \in I\}$: Chevalley generators,

relations: $[e_i, f_j] = \delta_{ij} h_i$, $[h_i, e_j] = \langle h_i, \alpha_j \rangle e_i$, ..., etc.

$$U(\mathfrak{g}) \stackrel{q ext{-analog}}{\Longrightarrow} \mathsf{quantized} \; \mathsf{enveloping} \; \mathsf{algebra} \; U_q(\mathfrak{g})$$

$$U_q(\mathfrak{g}) := \langle e_i, k_i^{\pm 1}, f_i \mid i \in I \rangle \text{ (over } \mathbb{C}(q))$$

relations:
$$[e_i,f_j]=\delta_{ij}rac{k_i-k_{-i}}{q_i-q_-^{-1}}$$
 $(q_i=q^{d_i},d_i=(lpha_i,lpha_i)/2),$

$$k_i e_j k_i^{-1} = q_i^{\langle h_i, \alpha_j \rangle} e_j, \ldots$$
, etc. $(k_i \approx q_i^{h_i})$.

In particular, we can take a limit $q \rightarrow 1$ (in a suitable sence)

$$U_q(\mathfrak{g}) \stackrel{q \to 1}{\Longrightarrow} U(\mathfrak{g})$$
 (classical limit)

Moreover, classical limit is also defined on modules:

$$V_q:U_q(\mathfrak{g})$$
-module $\stackrel{q o 1}{\Longrightarrow} V_1:U(\mathfrak{g})$ -module.

finite-dimensional $U_q(\mathfrak{g})$ -modules

$$\mathfrak{g}$$
: simple Lie algebra, $I = \{1, \ldots, n\}$: index set, $\{e_i, h_i, f_i \mid i \in I\}$: Chevalley generators, relations: $[e_i, f_j] = \delta_{ij}h_i$, $[h_i, e_j] = \langle h_i, \alpha_j \rangle e_i$, ..., etc.

 $U(\mathfrak{g}) \overset{q ext{-analog}}{\Longrightarrow}$ quantized enveloping algebra $U_q(\mathfrak{g})$

$$U_q(\mathfrak{g}) := \langle e_i, k_i^{\pm 1}, f_i \mid i \in I \rangle \text{ (over } \mathbb{C}(q))$$

relations:
$$[e_i, f_j] = \delta_{ij} \frac{k_i - k_{-i}}{q_i - q_-^{-1}} \quad (q_i = q^{d_i}, d_i = (\alpha_i, \alpha_i)/2),$$

$$k_i e_j k_i^{-1} = q_i^{\langle h_i, \alpha_j \rangle} e_j, \ldots$$
, etc. $(k_i \approx q_i^{h_i})$.

In particular, we can take a limit $q \rightarrow 1$ (in a suitable sence)

$$U_q(\mathfrak{g}) \stackrel{q \to 1}{\Longrightarrow} U(\mathfrak{g})$$
 (classical limit).

Moreover, classical limit is also defined on modules:

$$V_q:U_q(\mathfrak{g})$$
-module $\stackrel{q o 1}{\Longrightarrow}V_1:U(\mathfrak{g})$ -module.

P: weight lattice of \mathfrak{g} , P_+ : dominant integral weights.

We say a $U_q(\mathfrak{g})$ -module V is of type 1 if

$$V = \bigoplus_{\lambda \in P} V_{\lambda}, \quad V_{\lambda} = \{ v \in V \mid k_i v = q_i^{\langle h_i, \lambda \rangle} v \}.$$

In this talk, we assume all the $U_q(\mathfrak{g})$ -modules are of type 1.

Theorem

Similarly as \mathfrak{g} -modules, finite-dimensional simple $U_q(\mathfrak{g})$ -modules (of type 1) are parametrized by P_+ . Moreover, for each $\lambda \in P_+$ we have

$$V_q(\lambda) \colon U_q(\mathfrak{g})$$
-module $\stackrel{q \to 1}{\Longrightarrow} V(\lambda) \colon U(\mathfrak{g})$ -module.

In particular, $\operatorname{ch} V_q(\lambda) = \operatorname{ch} V(\lambda)$

P: weight lattice of \mathfrak{g} , P_+ : dominant integral weights.

We say a $U_q(\mathfrak{g})$ -module V is of type 1 if

$$V = \bigoplus_{\lambda \in P} V_{\lambda}, \quad V_{\lambda} = \{ v \in V \mid k_i v = q_i^{\langle h_i, \lambda \rangle} v \}.$$

In this talk, we assume all the $U_q(\mathfrak{g})$ -modules are of type 1.

Theorem

Similarly as \mathfrak{g} -modules, finite-dimensional simple $U_q(\mathfrak{g})$ -modules (of type 1) are parametrized by P_+ . Moreover, for each $\lambda \in P_+$ we have

$$V_q(\lambda)\colon \ U_q(\mathfrak{g})\text{-module} \stackrel{q o 1}{\Longrightarrow} V(\lambda)\colon \ U(\mathfrak{g})\text{-module}.$$

In particular, $\operatorname{ch} V_q(\lambda) = \operatorname{ch} V(\lambda)$.

finite-dimensional $U_q(L\mathfrak{g})$ -modules

$$\begin{split} L\mathfrak{g} &= \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}] \colon \text{loop algebra} \\ \text{relations} &\colon [h_i \otimes t^m, h_j \otimes t^n] = 0, \\ [h_i \otimes t^m, e_j \otimes t^n] &= \langle h_i, \alpha_j \rangle e_j \otimes t^{m+n}, \ldots, \text{etc.} \\ \overset{q\text{-analog}}{\Longrightarrow} \text{ quantum loop algebra } U_q(L\mathfrak{g}) \\ U_q(L\mathfrak{g}) &= \langle e_{i,m}, f_{i,m}, k_i^{\pm 1}, h_{i,m} \mid i,m \rangle \text{ (over } \mathbb{C}(q)) \\ \text{relations} &\colon [h_{i,m}, h_{j,n}] = 0, \\ [h_{i,m}, e_{j,n}] &= \frac{q_i^{m\langle h_i, \alpha_j \rangle} - q_i^{-m\langle h_i, \alpha_j \rangle}}{m(q_i - q_i^{-1})} e_{j,m+n}, \ldots, \text{etc.} \\ \text{In particular, } U_q(L\mathfrak{g}) &\overset{q \to 1}{\Longrightarrow} U(L\mathfrak{g}). \end{split}$$

6/24

$$\begin{array}{l} U^+:=\langle e_{i,m}\mid i,m\rangle,\; U^0:=\langle h_{i,m},k_i^{\pm 1}\mid i,m\rangle,\; U^-:=\langle f_{i,m}\mid i,m\rangle\\ \\ U_q(L\mathfrak{g})=U^-\cdot U^0\cdot U^+: \; \text{triangular decomposition}.\\ \\ \text{Since } U^0\cong \mathbb{C}(q)[h_{i,m},k_i^{\pm 1}],\; \text{we can define} \end{array}$$

for
$$\Psi \in \left(\bigoplus_{i,m} \mathbb{C}(q)h_{i,m} \oplus \bigoplus_i \mathbb{C}(q)k_i\right)^*$$
 a Verma-like module
$$M_q(\Psi) = U_q(L\mathfrak{g}) \otimes_{U^0 \cdot U^+} \mathbb{C}(q)_{\Psi}.$$

Then $M_q(\Psi)$ has a unique simple quotient $V_q(\Psi)$.

For $i \in I$, define $\Phi_i^{\pm}(u) \in U^0[[u^{\pm 1}]]$ by

$$\Phi_{i}^{\pm}(u) = k_{i}^{\pm} \exp \left(\pm (q_{i} - q_{i}^{-1}) \Sigma_{m=1}^{\infty} h_{i,m} u^{\pm m} \right).$$

Theorem (Chari, Pressley)

 $V_q(\Psi)$ is finite-dimensional if and only if there exists $P_i(u) \in \mathbb{C}(q)[u]$ with constant term 1 for each $i \in I$ such that

$$\Psi\left(\Phi_i^+(u)\right) = q_i^{\deg(P_i)} \frac{P_i(q_i^{-1}u)}{P_i(q_iu)} = \Psi\left(\Phi_i^-(u)\right).$$

 $U_q(L\mathfrak{g})\supseteq U_q(\mathfrak{g})\Rightarrow \operatorname{ch} V$ is defined for a $U_q(L\mathfrak{g})$ -module V. Under mild conditions, we can take

$$V_q(P) \stackrel{q \to 1}{\Longrightarrow} V_1(P)$$
: $U(L\mathfrak{g})$ -module.

However $V_1(P)$ is not necessarily simple, and the structures of $V_1(P)$ themselves are not so easy to understand.

In this talk, we study $V_1(P)$ for "minimal affinizations" of type BCD. (Type A is trivial as explained later).

 $U_q(L\mathfrak{g})\supseteq U_q(\mathfrak{g})\Rightarrow \operatorname{ch} V$ is defined for a $U_q(L\mathfrak{g})$ -module V. Under mild conditions, we can take

$$V_q(P) \stackrel{q \to 1}{\Longrightarrow} V_1(P)$$
: $U(L\mathfrak{g})$ -module.

However $V_1(P)$ is not necessarily simple, and the structures of $V_1(P)$ themselves are not so easy to understand.

In this talk, we study $V_1(P)$ for "minimal affinizations" of type BCD. (Type A is trivial as explained later).

 $U_q(L\mathfrak{g})\supseteq U_q(\mathfrak{g})\Rightarrow\operatorname{ch} V$ is defined for a $U_q(L\mathfrak{g})$ -module V. Under mild conditions, we can take

$$V_q(P) \stackrel{q \to 1}{\Longrightarrow} V_1(P)$$
: $U(L\mathfrak{g})$ -module.

However $V_1(P)$ is not necessarily simple, and the structures of $V_1(P)$ themselves are not so easy to understand.

In this talk, we study $V_1(P)$ for "minimal affinizations" of type BCD. (Type A is trivial as explained later).

Definition of minimal affinization

 $V_q(\lambda)$: simple $U_q(\mathfrak{g})$ -module corresponding to $\lambda \in P_+$.

Definition

$$U_q(L\mathfrak{g})$$
-module V is an affinization of $V_q(\lambda)$

$$\stackrel{\mathrm{def}}{\Leftrightarrow} V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu} \text{ as a } U_q(\mathfrak{g})\text{-module}.$$

For
$$\lambda = \sum_{i \in I} m_i \varpi_i \in P_+$$
,

$$\mathcal{P}^{\lambda} := \{ P = (P_1, \dots, P_n) \mid P_i(0) = 1, \deg P_i = m_i \}.$$

Fact: $P \in \mathcal{P}^{\lambda} \Leftrightarrow V_q(P)$ is an affinization of $V_q(\lambda)$.

 $V_q(P)$ is a minimal affinization \Leftrightarrow The part $\bigoplus_{n < \lambda} V_q(\mu)^{\oplus s_\mu}$ is "minimal"

Definition of minimal affinization

 $V_q(\lambda)$: simple $U_q(\mathfrak{g})$ -module corresponding to $\lambda \in P_+$.

Definition

$$U_q(L\mathfrak{g})$$
-module V is an affinization of $V_q(\lambda)$

$$\stackrel{\mathrm{def}}{\Leftrightarrow} V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu} \text{ as a } U_q(\mathfrak{g})\text{-module}.$$

For
$$\lambda = \sum_{i \in I} m_i \varpi_i \in P_+$$
,

$$\mathcal{P}^{\lambda} := \{ P = (P_1, \dots, P_n) \mid P_i(0) = 1, \deg P_i = m_i \}.$$

Fact: $P \in \mathcal{P}^{\lambda} \Leftrightarrow V_q(P)$ is an affinization of $V_q(\lambda)$.

 $V_q(P)$ is a minimal affinization

 \Leftrightarrow The part $\bigoplus_{u<\lambda} V_q(\mu)^{\oplus s_\mu}$ is "minimal".

Definition (Chari)

- (i) Two affinizations V, W of $V_q(\lambda)$ are equivalent
 - $\stackrel{\text{\tiny def}}{\Longleftrightarrow} V \cong W \text{ as } U_q(\mathfrak{g})\text{-modules}.$
 - ([V]: equivalent class of V)
- (ii) Define a partial order on equivalent classes as follows:
 Assume

$$V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu(V)}, \ W \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu(W)}.$$

Then $[V] \leq [W] \stackrel{\text{def}}{\Longleftrightarrow} \text{ If } \mu \text{ satisfies } s_{\mu}(V) > s_{\mu}(W)$ then $\mu < \exists v < \lambda \text{ such that } s_{\nu}(V) < s_{\nu}(W).$

(iii) V is minimal affinization for λ $\stackrel{\text{def}}{\Longleftrightarrow} [V]$ is minimal among the affinizations of $V_a(\lambda)$

Definition (Chari)

- (i) Two affinizations V, W of $V_q(\lambda)$ are equivalent
 - $\stackrel{\text{\tiny def}}{\Longleftrightarrow} V \cong W \text{ as } U_q(\mathfrak{g})\text{-modules}.$
 - ([V]: equivalent class of V)
- (ii) Define a partial order on equivalent classes as follows:
 Assume

$$V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu(V)}, \ W \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu(W)}.$$

Then
$$[V] \leq [W] \iff$$
 If μ satisfies $s_{\mu}(V) > s_{\mu}(W)$, then $\mu < \exists v < \lambda$ such that $s_{\nu}(V) < s_{\nu}(W)$.

(iii) V is minimal affinization for λ

 \Longrightarrow [V] is minimal among the affinizations of $V_q(\lambda)$

Definition (Chari)

- (i) Two affinizations V, W of $V_q(\lambda)$ are equivalent
 - $\stackrel{\text{\tiny def}}{\Longleftrightarrow} V \cong W \text{ as } U_q(\mathfrak{g})\text{-modules}.$
 - ([V]: equivalent class of V)
- (ii) Define a partial order on equivalent classes as follows:
 Assume

$$V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu(V)}, \ W \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus s_\mu(W)}.$$

Then $[V] \leq [W] \stackrel{\text{def}}{\Longleftrightarrow} \text{ If } \mu \text{ satisfies } s_{\mu}(V) > s_{\mu}(W),$ then $\mu < \exists v < \lambda \text{ such that } s_{\nu}(V) < s_{\nu}(W).$

(iii) V is minimal affinization for λ $\stackrel{\text{def}}{\Longleftrightarrow} [V]$ is minimal among the affinizations of $V_q(\lambda)$.

Minimal affinizations for type A

Assume \mathfrak{g} is of type A_n .

For any $a \in \mathbb{C}(q)^*$, \exists an algebra homomorphism

$$\operatorname{ev}_a \colon U_q(L\mathfrak{g}) \to U_q(\mathfrak{g}),$$

which is a q-analog of the following map:

$$\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \to \mathfrak{g}$$

 $x \otimes f \mapsto f(a)x.$

 \therefore ev_a^{*}($V_q(\lambda)$) is the unique minimal affinization for λ (up to equivalence).

In other types ev_a does not exist \implies Is minimal affinization unique (up to equivalence)

Minimal affinizations for type A

Assume \mathfrak{g} is of type A_n .

For any $a \in \mathbb{C}(q)^*$, \exists an algebra homomorphism

$$\operatorname{ev}_a \colon U_q(L\mathfrak{g}) \to U_q(\mathfrak{g}),$$

which is a q-analog of the following map:

$$\mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \to \mathfrak{g}$$

 $x \otimes f \mapsto f(a)x.$

 \therefore ev_a^{*}(V_q(λ)) is the unique minimal affinization for λ (up to equivalence).

In other types eva does not exist

⇒ Is minimal affinization unique (up to equivalence)?

Theorem (Chari, Chari-Pressley)

g: ABCFG. For each $\lambda \in P_+$, $\exists!$ minimal affinization for λ , and $P \in \mathcal{P}^{\lambda}$ s.t. $[V_q(P)]$ is minimal were explicitly given.

For type DE, the situation becomes more complicated.

Theorem (Chari-Pressley)

 $\mathfrak{g}\colon DE.\ i_0\in I\colon$ trivalent node, $J_1,J_2,J_3\subseteq I$ connected subgraphs such that $I=\bigsqcup_{k=1,2,3}J_k\sqcup\{i_0\}.$

For $\lambda = \sum m_i \varpi_i$,

- (i) $\exists!$ minimal affinization if $m_i = 0 \ (\forall i \in J_k)$ for some k,
- (ii) $\#\{minimal\ affinizations\} = 3$ if (i) is not true and $m_{i_0} \neq 0$
- (iii) $\#\{minimal\ affinizations\}\$ is not uniformly bounded if (i) is not true and $m_{i_0}=0$. (irregular case)
- For (i) (ii) (regular case), these $P \in \mathcal{P}^{\lambda}$ were explicitly given

Theorem (Chari, Chari-Pressley)

 \mathfrak{g} : ABCFG. For each $\lambda \in P_+$, $\exists!$ minimal affinization for λ , and $P \in \mathcal{P}^{\lambda}$ s.t. $[V_q(P)]$ is minimal were explicitly given.

For type DE, the situation becomes more complicated.

Theorem (Chari-Pressley)

 \mathfrak{g} : DE. $i_0 \in I$: trivalent node, $J_1, J_2, J_3 \subseteq I$ connected subgraphs such that $I = \bigsqcup_{k=1,2,3} J_k \sqcup \{i_0\}$.

For $\lambda = \sum m_i \varpi_i$,

- (i) \exists ! minimal affinization if $m_i = 0 \ (\forall i \in J_k)$ for some k,
- (ii) $\#\{minimal\ affinizations\} = 3$ if (i) is not true and $m_{i_0} \neq 0$,
- (iii) #{minimal affinizations} is not uniformly bounded if (i) is not true and $m_{i_0} = 0$. (irregular case)

For (i) (ii) (regular case), these $P \in \mathcal{P}^{\lambda}$ were explicitly given.

Example: Kirillov-Reshetikhin module

When $\lambda = m\omega_i$, \exists !minimal affinization for λ . Let $a \in \mathbb{C}(q)^*$, and define $P = (P_1, \dots, P_n)$ by

$$P_j = \begin{cases} (1-au)(1-aq_i^2u)\cdots(1-aq_i^{2(m-1)}u) & \text{if } j=i,\\ 1 & \text{if } j\neq i. \end{cases}$$

 $W^{i,m} := V_q(P)$: the unique minimal affinization for λ (Kirillov-Reshetikhin (KR) module)

KR modules have several good properties:

- (i) T-system, Q-system
- (ii) Fermionic character formula,
- (iii) having crystal basis

Minimal affinizations also have good properties? (cf. extended T-system for B_n by Mukhin-Young)

Example: Kirillov-Reshetikhin module

When $\lambda = m\omega_i$, \exists !minimal affinization for λ . Let $a \in \mathbb{C}(q)^*$, and define $P = (P_1, \dots, P_n)$ by

$$P_{j} = \begin{cases} (1 - au)(1 - aq_{i}^{2}u) \cdots (1 - aq_{i}^{2(m-1)}u) & \text{if } j = i, \\ 1 & \text{if } j \neq i. \end{cases}$$

 $W^{i,m} := V_q(P)$: the unique minimal affinization for λ (Kirillov-Reshetikhin (KR) module)

KR modules have several good properties:

- (i) T-system, Q-system,
- (ii) Fermionic character formula,
- (iii) having crystal basis.

Minimal affinizations also have good properties? (cf. extended T-system for B_n by Mukhin-Young).

Demazure module

 $\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}d$: affine Lie algebra, $\widehat{\mathfrak{b}} = \mathfrak{b} \oplus \mathbb{C}K \oplus \mathbb{C}d \oplus \mathfrak{g} \otimes t\mathbb{C}[t]$: Borel subalgebra, $\widehat{V}(\Lambda)$: simple highest weight module of $\widehat{\mathfrak{g}}$ with h.w. $\Lambda \in \widehat{P}_+$.

Let $\xi \in \widehat{P}$.

There exists a unique $\Lambda \in \widehat{P}_+$ and $w \in \widehat{W}$ such that $\xi = w(\Lambda)$.

Definition

Let $0 \neq v_{\mathcal{E}} \in \widehat{V}(\Lambda)_{\mathcal{E}}$. The $\widehat{\mathfrak{b}}$ -submodule

$$D(\xi) := U(\widehat{\mathfrak{b}}) v_{\xi} \subseteq \widehat{V}(\Lambda)$$

is called a Demazure module

Demazure module

 $\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}d$: affine Lie algebra, $\widehat{\mathfrak{b}} = \mathfrak{b} \oplus \mathbb{C}K \oplus \mathbb{C}d \oplus \mathfrak{g} \otimes t\mathbb{C}[t]$: Borel subalgebra, $\widehat{V}(\Lambda)$: simple highest weight module of $\widehat{\mathfrak{g}}$ with h.w. $\Lambda \in \widehat{P}_+$.

Let $\xi \in \widehat{P}$.

There exists a unique $\Lambda \in \widehat{P}_+$ and $w \in \widehat{W}$ such that $\xi = w(\Lambda)$.

Definition

Let $0 \neq v_{\xi} \in \widehat{V}(\Lambda)_{\xi}$. The $\widehat{\mathfrak{b}}$ -submodule

$$D(\xi):=U(\widehat{\mathfrak{b}})v_{\xi}\subseteq \widehat{V}(\Lambda)$$

is called a Demazure module.

character formular for $D(\xi)$

For a $\widehat{\mathfrak{g}}$ -module \widehat{V} and a $\widehat{\mathfrak{b}}$ -submodule $D\subseteq \widehat{V}$, we set

$$\mathcal{F}_i D := U(\widehat{\mathfrak{b}} \oplus \mathbb{C} f_i) D$$
 for $i \in \widehat{I} := \{0\} \cup I$.

In many cases, $\operatorname{ch} \mathcal{F}_i D = \mathcal{D}_i(\operatorname{ch} D)$ follows where

$$\mathcal{D}_i(f) := \frac{f - e^{-\alpha_i} s_i(f)}{1 - e^{-\alpha_i}} \quad \text{(Demazure operator)}.$$

If $\xi(h_i) \geq 0$, we have

$$\mathcal{F}_i D(\xi) = U(\widehat{\mathfrak{b}} \oplus \mathbb{C} f_i) v_{\xi} = U(\widehat{\mathfrak{b}}) v_{s_i \xi} = D(s_i \xi).$$

Hence if $\xi = w(\Lambda)$ and $w = s_{i_1} \cdots s_{i_k}$ is reduced,

$$\operatorname{ch} D(\xi) = \operatorname{ch} \mathcal{F}_{i_1} \cdots \mathcal{F}_{i_k} \mathbb{C} \nu_{\Lambda} = \mathcal{D}_{i_1} \cdots \mathcal{D}_{i_k} (e^{\Lambda})$$

character formular for $D(\xi)$

For a $\widehat{\mathfrak{g}}$ -module \widehat{V} and a $\widehat{\mathfrak{b}}$ -submodule $D\subseteq \widehat{V}$, we set

$$\mathcal{F}_i D := U(\widehat{\mathfrak{b}} \oplus \mathbb{C} f_i) D$$
 for $i \in \widehat{I} := \{0\} \cup I$.

In many cases, $\operatorname{ch} \mathcal{F}_i D = \mathcal{D}_i(\operatorname{ch} D)$ follows where

$$\mathcal{D}_i(f) := \frac{f - e^{-\alpha_i} s_i(f)}{1 - e^{-\alpha_i}} \quad \text{(Demazure operator)}.$$

If $\xi(h_i) \geq 0$, we have

$$\mathcal{F}_iD(\xi)=U(\widehat{\mathfrak{b}}\oplus\mathbb{C}f_i)v_\xi=U(\widehat{\mathfrak{b}})v_{s_i\xi}=D(s_i\xi).$$

Hence if $\xi = w(\Lambda)$ and $w = s_{i_1} \cdots s_{i_k}$ is reduced,

$$\operatorname{ch} D(\xi) = \operatorname{ch} \mathcal{F}_{i_1} \cdots \mathcal{F}_{i_k} \mathbb{C} v_{\Lambda} = \mathcal{D}_{i_1} \cdots \mathcal{D}_{i_k} (e^{\Lambda}).$$

Restricted limit

M: Minimal affinization ($U_q(L\mathfrak{g})$ -module)

classical limit

$$\Longrightarrow$$
 $M_1: L\mathfrak{g}(=\mathfrak{g}\otimes \mathbb{C}[t,t^{-1}])$ -module

Regard M_1 as a $\mathfrak{g}[t] := \mathfrak{g} \otimes \mathbb{C}[t]$ -module by restriction.

There exists $a \in \mathbb{C}$ such that

$$\mathfrak{g}\otimes (t+a)^N M_1=0$$
 for $N>>0$.

Define $\tau_a : \mathfrak{g}[t] \to \mathfrak{g}[t]$ by $\tau_a(g \otimes t^n) = g \otimes (t+a)^n$, and

$$\bar{M} := \tau_a^*(M_1)$$
 (Restricted limit).

 \bar{M} is a \mathbb{Z} -graded $\mathfrak{g}[t]$ -module. We have

$$ch M = ch \bar{M}.$$

KR module case: Motivation of Main result

 $\Lambda_0 \in \widehat{P}_+$: fundamental weight of $\widehat{\mathfrak{g}}$,

 $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-, \qquad w_0 \in W$: longest element,

 $t_i := (\alpha_i, \alpha_i)/2$ for $i \in I$ (normalized by (long, long) = 2),

 $\bar{W}^{i,m}$: Restricted limit of the KR module $W^{i,m}$.

Theorem (Chari, Chari-Moura, Di Francesco-Kedem)

(i) $ar{W}^{i,m}$ is a cyclic $\mathfrak{g}[t]$ -module with defining relations

$$\mathfrak{n}_{+}[t]v = 0, \quad h \otimes t^{n}v = m\delta_{n0}\varpi_{i}(h), \quad t^{2}\mathfrak{n}_{-}[t]v = 0,$$

$$f_{i}^{m+1}v = f_{i} \otimes tv = 0, \quad f_{j}v = 0 \ (j \neq i).$$

(ii)
$$\bar{W}^{i,m}\cong D(mw_0(\varpi_i)+\lceil mt_i\rceil\Lambda_0),$$
 where r.h.s extends to a $\mathfrak{g}[t]$ -module.

KR module case: Motivation of Main result

 $\Lambda_0 \in \widehat{P}_+$: fundamental weight of $\widehat{\mathfrak{g}}$, $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-, \qquad w_0 \in W$: longest element, $t_i := (\alpha_i, \alpha_i)/2$ for $i \in I$ (normalized by (long, long) = 2),

 $\bar{W}^{i,m}$: Restricted limit of the KR module $W^{i,m}$.

Theorem (Chari, Chari-Moura, Di Francesco-Kedem)

(i) $\bar{W}^{i,m}$ is a cyclic $\mathfrak{g}[t]$ -module with defining relations

$$\mathfrak{n}_{+}[t]v = 0, \quad h \otimes t^{n}v = m\delta_{n0}\varpi_{i}(h), \quad t^{2}\mathfrak{n}_{-}[t]v = 0,$$

$$f_{i}^{m+1}v = f_{i} \otimes tv = 0, \quad f_{j}v = 0 \ (j \neq i).$$

(ii)

 $ar{W}^{i,m}\cong D(mw_0(arpi_i)+\lceil mt_i
ceil\Lambda_0)$ where r.h.s extends to a $\mathfrak{g}[t]$ -module.

KR module case: Motivation of Main result

 $\Lambda_0 \in \widehat{P}_+$: fundamental weight of $\widehat{\mathfrak{g}}$, $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-, \qquad w_0 \in W$: longest element, $t_i := (\alpha_i, \alpha_i)/2$ for $i \in I$ (normalized by (long, long) = 2), $\bar{W}^{i,m}$: Restricted limit of the KR module $W^{i,m}$.

Theorem (Chari, Chari-Moura, Di Francesco-Kedem)

(i) $ar{W}^{i,m}$ is a cyclic $\mathfrak{g}[t]$ -module with defining relations

$$\begin{split} \mathfrak{n}_{+}[t]v &= 0, \quad h \otimes t^{n}v = m\delta_{n0}\varpi_{i}(h), \quad t^{2}\mathfrak{n}_{-}[t]v = 0, \\ f_{i}^{m+1}v &= f_{i} \otimes tv = 0, \quad f_{j}v = 0 \ (j \neq i). \end{split}$$

(ii) $\bar{W}^{i,m}\cong D(mw_0(\varpi_i)+\lceil mt_i\rceil\Lambda_0),$ where r.h.s extends to a q[t]-module.

Main results

Assume that M_{λ} is a minimal affinization for $\lambda = \sum_{i \in I} m_i \varpi_i$.

Theorem

(i) When $\mathfrak g$ is B_n or C_n , $\bar M_\lambda$ is a cyclic $\mathfrak g[t]$ -module with defining relations

$$\mathfrak{n}_{+}[t]v = 0, \quad h \otimes t^{n}v = \delta_{n0}\lambda(h)v, \quad t^{2}\mathfrak{n}_{-}[t]v = 0,
f_{i}^{m_{i}+1}v = 0 \ (i \in I), \quad f_{\alpha} \otimes tv = 0 \ (\alpha \in \Delta_{+}^{(1)}),$$

where
$$\Delta_+^{(1)} = \{ \sum_{i \in I} k_i \alpha_i \mid k_i \leq 1 \} \subseteq \Delta_+$$
.

(ii) When ${\mathfrak g}$ is B_n , $ar M_\lambda$ is isomorphic to the submodule of

$$D(m_1w_0(\varpi_1) + \lceil m_1t_1\rceil\Lambda_0) \otimes \cdots \otimes D(m_nw_0(\varpi_n) + \lceil m_nt_n\rceil\Lambda_0)$$

generated by $v_{m_1w_0(\varpi_1)+\lceil m_1t_1\rceil\Lambda_0}\otimes\cdots\otimes v_{m_nw_0(\varpi_1)+\lceil m_nt_n\rceil\Lambda_0}$.

Main results

Assume that M_{λ} is a minimal affinization for $\lambda = \sum_{i \in I} m_i \varpi_i$.

Theorem

(i) When $\mathfrak g$ is B_n or C_n , $\bar M_\lambda$ is a cyclic $\mathfrak g[t]$ -module with defining relations

$$\mathfrak{n}_{+}[t]v = 0, \quad h \otimes t^{n}v = \delta_{n0}\lambda(h)v, \quad t^{2}\mathfrak{n}_{-}[t]v = 0,
f_{i}^{m_{i}+1}v = 0 \ (i \in I), \quad f_{\alpha} \otimes tv = 0 \ (\alpha \in \Delta_{+}^{(1)}),$$

where
$$\Delta_+^{(1)} = \{ \sum_{i \in I} k_i \alpha_i \mid k_i \leq 1 \} \subseteq \Delta_+$$
.

(ii) When $\mathfrak g$ is B_n , $\bar M_\lambda$ is isomorphic to the submodule of

$$D(m_1w_0(\varpi_1) + \lceil m_1t_1 \rceil \Lambda_0) \otimes \cdots \otimes D(m_nw_0(\varpi_n) + \lceil m_nt_n \rceil \Lambda_0)$$

generated by $v_{m_1w_0(\varpi_1)+\lceil m_1t_1\rceil\Lambda_0}\otimes\cdots\otimes v_{m_nw_0(\varpi_1)+\lceil m_nt_n\rceil\Lambda_0}$.

A similar result of (ii) also holds for C_n . However, we need to modify the weights of Demazure modules so that the sum of coefficients become even.

Ex.
$$n=4$$
, $\lambda=8\varpi_1+6\varpi_2+5\varpi_3+5\varpi_4$. $\bar{M}_\lambda\cong$ the submodule of
$$D(w_0(7\varpi_1+\varpi_2)+4\Lambda_0)\otimes D(w_0(5\varpi_2+\varpi_3)+3\Lambda_0) \otimes D(4w_0(\varpi_3)+2\Lambda_0)\otimes D(w_0(5\varpi_4+\varpi_1)+6\Lambda_0)$$

Theorem

When \mathfrak{g} is D_n and $\#\{\min. aff.\} = 1$ or 3, similar results hold. (They are formulated case by case, and here omit the detail.)

For B_n , these are conjectured (and partially proved) by [Moura, '10].

A similar result of (ii) also holds for C_n .

However, we need to modify the weights of Demazure modules so that the sum of coefficients become even.

Ex.
$$n=4$$
, $\lambda=8\varpi_1+6\varpi_2+5\varpi_3+5\varpi_4$.
 $\bar{M}_{\lambda}\cong$ the submodule of
$$D(w_0(7\varpi_1+\varpi_2)+4\Lambda_0)\otimes D(w_0(5\varpi_2+\varpi_3)+3\Lambda_0)$$

$$\otimes D(4w_0(\varpi_3) + 2\Lambda_0) \otimes D(w_0(5\varpi_2 + \varpi_3) + 5\Lambda_0).$$

Γheorem

When \mathfrak{g} is D_n and $\#\{\text{min. aff.}\} = 1$ or 3, similar results hold. (They are formulated case by case, and here omit the detail.

For B_n , these are conjectured (and partially proved) by [Moura, '10].

A similar result of (ii) also holds for C_n .

However, we need to modify the weights of Demazure modules so that the sum of coefficients become even.

Ex.
$$n = 4$$
, $\lambda = 8\omega_1 + 6\omega_2 + 5\omega_3 + 5\omega_4$.

 $\bar{M}_{\lambda} \cong$ the submodule of

$$D(w_0(7\varpi_1 + \varpi_2) + 4\Lambda_0) \otimes D(w_0(5\varpi_2 + \varpi_3) + 3\Lambda_0)$$

$$\otimes D(4w_0(\varpi_3) + 2\Lambda_0) \otimes D(w_0(5\varpi_4 + \varpi_1) + 6\Lambda_0).$$

Theorem

When \mathfrak{g} is D_n and $\#\{\min. aff.\} = 1$ or 3, similar results hold. (They are formulated case by case, and here omit the detail.)

For B_n , these are conjectured (and partially proved) by [Moura, '10].

Corollaries

From the theorem, we obtain two corollaries.

First, let us consider the limit $\lambda o \infty$ of \bar{M}_{λ} . Then the relations $f_i^{m_i+1}v=\mathbf{0}$ in (i) vanish, and we have

$$``\bar{M}_{\lambda} \stackrel{\lambda \to \infty}{\to} U \Big(\mathfrak{n}_- \oplus \bigoplus_{\alpha \notin \Delta^{(1)}_+} (f_\alpha \otimes t) \Big)".$$

Corollary

When g is B_n or C_n , we have

$$\lim_{\lambda \to \infty} e^{-\lambda} \operatorname{ch} \bar{M}_{\lambda} = \prod_{\alpha \in \Lambda_{+}} \frac{1}{1 - e^{\alpha}} \cdot \prod_{\alpha \notin \Lambda_{+}^{(1)}} \frac{1}{1 - e^{\alpha}}$$

This is conjectured in the recent preprint by [Mukhin-Young].

Corollaries

From the theorem, we obtain two corollaries.

First, let us consider the limit $\lambda \to \infty$ of \bar{M}_{λ} .

Then the relations $f_i^{m_i+1}v = 0$ in (i) vanish, and we have

$$"\bar{M}_{\lambda} \stackrel{\lambda \to \infty}{\to} U \Big(\mathfrak{n}_{-} \oplus \bigoplus_{\alpha \notin \Lambda^{(1)}_{+}} (f_{\alpha} \otimes t) \Big)".$$

Corollary

When \mathfrak{g} is B_n or C_n , we have

$$\lim_{\lambda\to\infty}e^{-\lambda}\mathrm{ch}\;\bar{M}_{\lambda}=\prod_{\alpha\in\Delta_{+}}\frac{1}{1-e^{\alpha}}\cdot\prod_{\alpha\notin\Delta_{+}^{(1)}}\frac{1}{1-e^{\alpha}}.$$

This is conjectured in the recent preprint by [Mukhin-Young].

For simplicity, assume \mathfrak{g} is B_n .

au: diagram auto. changing the nodes $oldsymbol{0}$ and $oldsymbol{1}$. It follows that

the submodule of
$$D(m_1w_0(\varpi_1) + \lceil m_1t_1 \rceil \Lambda_0) \otimes \cdots \otimes D(m_nw_0(\varpi_n) + \lceil m_nt_n \rceil \Lambda_0)$$

$$\cong \mathcal{F}_{w_0}\tau^*\mathcal{F}_{[1,n-1]}(\mathbb{C}_{m_1\Lambda_0} \otimes \tau^*\mathcal{F}_{[1,n-1]}(\mathbb{C}_{m_2\Lambda_0} \otimes \cdots \otimes \tau^*\mathcal{F}_{[1,n-1]}(\mathbb{C}_{[m_n/2]\Lambda_0+a\Lambda_m})\cdots))$$

where $\mathcal{F}_{[1,n-1]} := \mathcal{F}_1 \mathcal{F}_2 \cdots \mathcal{F}_{n-1}$, a = 0 if m_n is even and a = 1 otherwise.

Corollary

$$\operatorname{ch} \bar{M}_{\lambda} = \mathcal{D}_{w_0} \tau \mathcal{D}_{[1,n-1]} (e^{m_1 \Lambda_0} \cdot \tau \mathcal{D}_{[1,n-1]} (e^{m_2 \Lambda_0} \cdots \tau \mathcal{D}_{[1,n-1]} (e^{\lceil m_n/2 \rceil \Lambda_0 + a \Lambda_m}) \cdots)).$$

brief sketch of the proof of main theorem

For simplicity, assume \mathfrak{g} is B_n ,

- $R(\lambda)$: $\mathfrak{g}[t]$ -module in Theorem (i),
- $T(\lambda)$: $\mathfrak{g}[t]$ -module in Theorem (ii).
- goal: $R(\lambda) \cong \bar{M}_{\lambda} \cong T(\lambda)$.
- •Step 1: Prove $R(\lambda) \twoheadrightarrow \bar{M}_{\lambda}$ by checking \bar{M}_{λ} satisfies the relations of $R(\lambda)$.
- •Step 2: Prove $\bar{M}_{\lambda} \twoheadrightarrow T(\lambda)$ as follows:

$$(W^{1,m_1} \otimes \cdots \otimes W^{n,m_n})^* \xrightarrow{\exists} M_{\lambda}^* \Rightarrow M_{\lambda} \xrightarrow{\exists} W^{1,m_1} \otimes \cdots \otimes W^{n,m_n}$$

$$\stackrel{q \to 1}{\Rightarrow} \bar{M}_{\lambda} \xrightarrow{\exists}$$

$$D(m_1w_0(\varpi_1) + \lceil t_1m_1\rceil \Lambda_0) \otimes \cdots \otimes D(m_nw_0(\varpi_n) + \lceil t_nm_n\rceil \Lambda_0).$$

brief sketch of the proof of main theorem

For simplicity, assume \mathfrak{g} is B_n ,

- $R(\lambda)$: $\mathfrak{g}[t]$ -module in Theorem (i),
- $T(\lambda)$: $\mathfrak{g}[t]$ -module in Theorem (ii).
- goal: $R(\lambda) \cong \bar{M}_{\lambda} \cong T(\lambda)$.
- •Step 1: Prove $R(\lambda) \twoheadrightarrow \bar{M}_{\lambda}$ by checking \bar{M}_{λ} satisfies the relations of $R(\lambda)$.
- •Step 2: Prove $\bar{M}_{\lambda} \twoheadrightarrow T(\lambda)$ as follows:

$$(W^{1,m_1} \otimes \cdots \otimes W^{n,m_n})^* \xrightarrow{\exists} M_{\lambda}^* \Rightarrow M_{\lambda} \xrightarrow{\exists} W^{1,m_1} \otimes \cdots \otimes W^{n,m_n}$$

$$\stackrel{q \to 1}{\Rightarrow} \bar{M}_{\lambda} \xrightarrow{\exists}$$

$$D(m_1w_0(\varpi_1) + \lceil t_1m_1\rceil \Lambda_0) \otimes \cdots \otimes D(m_nw_0(\varpi_n) + \lceil t_nm_n\rceil \Lambda_0)$$

brief sketch of the proof of main theorem

For simplicity, assume \mathfrak{g} is B_n ,

- $R(\lambda)$: g[t]-module in Theorem (i),
- $T(\lambda)$: $\mathfrak{g}[t]$ -module in Theorem (ii).
- goal: $R(\lambda) \cong \bar{M}_{\lambda} \cong T(\lambda)$.
- •Step 1: Prove $R(\lambda) \twoheadrightarrow \bar{M}_{\lambda}$ by checking \bar{M}_{λ} satisfies the relations of $R(\lambda)$.
- •Step 2: Prove $\bar{M}_{\lambda} \twoheadrightarrow T(\lambda)$ as follows:

$$(W^{1,m_1} \otimes \cdots \otimes W^{n,m_n})^* \stackrel{\exists}{\to} M_{\lambda}^* \Rightarrow M_{\lambda} \stackrel{\exists}{\to} W^{1,m_1} \otimes \cdots \otimes W^{n,m_n}$$

$$\stackrel{q \to 1}{\to} \bar{M}_{\lambda} \stackrel{\exists}{\to}$$

$$D(m_1w_0(\varpi_1) + \lceil t_1m_1\rceil\Lambda_0) \otimes \cdots \otimes D(m_nw_0(\varpi_n) + \lceil t_nm_n\rceil\Lambda_0).$$

 \circ Step 3: Prove $T(\lambda) \twoheadrightarrow R(\lambda)$.

Recall that

$$T(\lambda) \cong \mathcal{F}_{w_0} \tau^* \mathcal{F}_{[1,n-1]} (\mathbb{C}_{m_1 \Lambda_0} \otimes \tau^* \mathcal{F}_{[1,n-1]} (\mathbb{C}_{m_2 \Lambda_0} \otimes \cdots \otimes \tau^* \mathcal{F}_{[1,n-1]} (\mathbb{C}_{\lceil m_n/2 \rceil \Lambda_0 + a \Lambda_m}) \cdots)).$$

Using this, determin the defining relations of $T(\lambda)$ recursively. From this, $T(\lambda) \twoheadrightarrow R(\lambda)$ follows.

Thank you for your attention!

 \circ Step 3: Prove $T(\lambda) \twoheadrightarrow R(\lambda)$.

Recall that

$$T(\lambda) \cong \mathcal{F}_{w_0} \tau^* \mathcal{F}_{[1,n-1]} (\mathbb{C}_{m_1 \Lambda_0} \otimes \tau^* \mathcal{F}_{[1,n-1]} (\mathbb{C}_{m_2 \Lambda_0} \otimes \cdots \otimes \tau^* \mathcal{F}_{[1,n-1]} (\mathbb{C}_{\lceil m_n/2 \rceil \Lambda_0 + a \Lambda_m}) \cdots)).$$

Using this, determin the defining relations of $T(\lambda)$ recursively. From this, $T(\lambda) \twoheadrightarrow R(\lambda)$ follows.

Thank you for your attention!