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Abstract

Study the structures of finite-dimensional simple modules
over a quantum loop algebra Uy(Lg).

2/24



Abstract

Problem
Study the structures of finite-dimensional simple modules

over a quantum loop algebra Uy(Lg).

Finite dimensional simple modules over Uy(Lg) are
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Abstract

Problem
Study the structures of finite-dimensional simple modules

over a quantum loop algebra Uy(Lg).

Finite dimensional simple modules over Uy(Lg) are
quite many. Hence it seems too ambitious to solve this
problem in general (at least for now).

In this talk, we concentrate on some distinguished subclass
(minimal affinizations).
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How to study?
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How to study?
M : Minimal affinization of Uy(Lg)

classical limit

M;: U(Lg)-module (Lg = ¢ ® C[t, t™1])

*
T°Res

== M: U(g ® C[t])-module (Restricted limit)
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How to study?
M : Minimal affinization of Uy(Lg)

classical limit

M;: U(Lg)-module (Lg = ¢ ® C[t, t™1])

*
T°Res

== M: U(g ® C[t])-module (Restricted limit)
ochM=chM

M is isomorphic to another U(g ® C[t])-module
(generalized Demazure module)

= obtainchM (& ch M)
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finite-dimensional  Ug(g)-modules

g: simple Lie algebra, | ={1,...,n}: index set,
{e, hi, fi | i € 1}: Chevalley generators,
relations: [Q, fJ] = 6ijhi, [hi,ej] = (hi,a'j)a, ..., €tC.
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finite-dimensional  Ug(g)-modules

g: simple Lie algebra, | ={1,...,n}: index set,
{e, hi, fi | i € 1}: Chevalley generators,
relations: [Q, fJ] = 6ijhi, [hi,ej] = (hi,a/j)e,, ..., €tC.

g-analog

U(g) = quantized enveloping algebra Uq(g)
Uq(g) := (&, K, fi | i € I) (over C(q))

relations: [e, f;] = 6”-% (g = q%, d = (@i, @)/2),
ke ki‘1 = qi““’“”)ej, ..., etc. (K = qi“‘).

In particular, we can take a limit g — 1 (in a suitable sence)

—1
Uq(9) q=> U(g) (classical limit).
Moreover, classical limit is also defined on modules:
—1
Vg @ Ug(g)-module q=:~ V1 : U(g)-module.
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P: weight lattice of g, P,: dominant integral weights.
We say a Ug(g)-module V is of type 1 if
V = @V,l, Va={(veV]|kv= gy

AeP
In this talk, we assume all the U4(g)-modules are of type 1.
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P: weight lattice of g, P,: dominant integral weights.
We say a Ug(g)-module V is of type 1 if
V = @Vb Va={(veV]|kv= gy
AeP
In this talk, we assume all the U4(g)-modules are of type 1.

Theorem

Similarly as g-modules, finite-dimensional simple
Uq(g)-modules (of type 1) are parametrized by P..
Moreover, for each A € P, we have

—1
V4(): Uq(g)-module = V(2): U(g)-module.
In particular, chVy(2) = chV(A4).
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finite-dimensional  Ug(Lg)-modules

Lg = ¢® C[t,t7Y]: loop algebra

relations : [hi® t™, h; ® t"] =0,
[hi ® tm, € ® tn] = (hi,a/j)ej ® tm+”,...,etc.

g-analog

= quantum loop algebra Ug(Lg)
Uq(L8) = (&,m, fim K=, him | i, m) (over C(q))

relations : [him, hjn] =0,
m(hi,(l") —m(hi,(l")
q - '
[hi,m, ej,n] = 1 ej,m+n, ceey etC.
o M@-ar)
In particular, Ug(Lg) = U(Lg).
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U+ := <e|,m I i’ m)a UO = (hi,ma klil | ia m)a U™ = (fi,m I i’ m)

Ug(Lg) = U~ - U°. U*: triangular decomposition.

Since U® = C(q)[hi,m, k*'], we can define

for ¥ € ( @, ., C@hin® @, C(a) ki)* a Verma-like module
Mg(¥) = Uqg(Lg) ®yo.u+ C(Q)y-

Then M('P) has a unique simple quotient V4('F).
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For i € |, define @*(u) € U%[[u*']] by

@*(u) = k*exp( £ (g — g )E>_ himu*™).

Theorem (Chari, Pressley)

Vq4(P) is finite-dimensional if and only if there exists

Pi(u) € C(q)[u] with constant term 1 for each i € | such that
Pi(q"u)

¥(®}(u) = g ?eg(P)T(;Iu) ¥(@7(u)).

{f.d. Ug(Lg)-mod.) &= {I-tuple of C(q)-poly. s.t. P,(0) =
Vy¢(P) & P = (Py,..., Py).
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Uq(Lg) 2 Uqy(g) = chV is defined for a Uy(Lg)-module V.
Under mild conditions, we can take

—1
Vo(P) = Vy(P): U(Lg)-module.
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Uq(Lg) 2 Uqy(g) = chV is defined for a Uy(Lg)-module V.
Under mild conditions, we can take

—1
Vo(P) = Vy(P): U(Lg)-module.

However V1(P) is not necessarily simple,
and the structures of V;(P) themselves are not so easy

to understand.
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Uq(Lg) 2 Uqy(g) = chV is defined for a Uy(Lg)-module V.
Under mild conditions, we can take

—1
Vo(P) = Vy(P): U(Lg)-module.

However V1(P) is not necessarily simple,
and the structures of V;(P) themselves are not so easy

to understand.

In this talk, we study V1(P) for “minimal affinizations”
of type BCD. (Type A is trivial as explained later).
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Definition of minimal affinization

Vq(4): simple Uqy(g)-module corresponding to A € P,.
Definition
Uq(Lg)-module V is an affinization of V()

EV = V() & @, Va(® as a Ug(g)-module.

For A = Y, mw; € Py,
Pt:={P = (Py..., Py | Pi(0) = 1,degP; = m}.

Fact: P € P! & V4(P) is an affinization of V().
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Definition of minimal affinization

Vq(4): simple Uqy(g)-module corresponding to A € P,.
Definition

Uq(Lg)-module V is an affinization of V()

def

oV =Vid)e ®ﬂ<1 Vq(1)®% as a Ugy(g)-module.

For A = Y, mw; € Py,
Pt:={P = (Py..., Py | Pi(0) = 1,degP; = m}.

Fact: P € P! & V4(P) is an affinization of V().

V4(P) is a minimal affinization
© The part @, Vo()®* is “minimal”.
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Definition (Chari)
(i) Two affinizations V, W of V(1) are equivalent

def
&=V Was Uq(g)-modules.
([V]: equivalent class of V)
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Definition (Chari)
(i) Two affinizations V, W of V(1) are equivalent

é V = W as Ugy(g)-modules.
([V]: equivalent class of V)

(i) Define a partial order on equivalent classes as follows:
Assume

V = Vo@)o@P Vo)V, W = Vo@)o@P V()™

u<a pu<a

Then [V] < [W] é If u satisfies s,(V) > s,(W),
then 4 < 3v < A such that s,(V) < s,(W).
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Definition (Chari)
(i) Two affinizations V, W of V(1) are equivalent

é V = W as Ugy(g)-modules.
([V]: equivalent class of V)

(i) Define a partial order on equivalent classes as follows:
Assume

V = Vo@)o@P Vo)V, W = Vo@)o@P V()™

u<a pu<a

Then [V] < [W] é If u satisfies s,(V) > s,(W),
then 4 < 3v < A such that s,(V) < s,(W).
(ii) V is minimal affinization for A

def
= [V] is minimal among the affinizations of V4(A4).
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Minimal affinizations for type A

Assume g is of type A,.
For any a € C(q)*, ¥ an algebra homomorphism

eva: Uqg(Lg) = Uq(9),
which is a g-analog of the following map:

gC[t,t™] - ¢
x®f p f(ax

. ev;(Vq(4)) is the unique minimal affinization for A
(up to equivalence).
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Minimal affinizations for type A

Assume g is of type A,.
For any a € C(q)*, ¥ an algebra homomorphism

eva: Uqg(Lg) = Uq(9),
which is a g-analog of the following map:

gC[t,t™] - ¢
x®f p f(ax

. ev;(Vq(4)) is the unique minimal affinization for A
(up to equivalence).

In other types ev, does not exist
= Is minimal affinization unique (up to equivalence)?
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Theorem (Chari, Chari-Pressley)

g: ABCFG. For each A € P,, A'minimal affinization for A,
and P € P's.t. [V4(P)] is minimal were explicitly given.
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Theorem (Chari, Chari-Pressley)
g: ABCFG. For each A € P,, A'minimal affinization for A,
and P € P's.t. [V4(P)] is minimal were explicitly given.

For type DE, the situation becomes more complicated.

Theorem (Chari-Pressley)
g:. DE. ig € I: trivalent node, J4, J,, J3 € | connected
subgraphs such that | = | |y-123 Jk U {io}.
For A = Z m i,
(i) A'minimal affinization if m; = 0 (Vi € J) for some Kk,
(i) #{minimal affinizations} = 3if (i) is not true and my, # O,
(ii) #{minimal affinizations} is not uniformly bounded
if (i) is not true and m;, = 0. (irregular case)

For (i) (i) (regular case), these P € P* were explicitly given.
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Example: Kirillov-Reshetikhin module

When A4 = mwo;, A'minimal affinization for A.
Let a € C(Q)*, and define P = (Py,..., Py) by

b - (1- au)(1-acfu)---(1—a™ ) ifj =i,
S if j #i.

WM := V,(P): the unique minimal affinization for A
(Kirillov-Reshetikhin (KR) module)
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Example: Kirillov-Reshetikhin module

When A4 = mwo;, A'minimal affinization for A.
Let a € C(Q)*, and define P = (Py,..., Py) by

o _ {(1 — au)(1 - acfu)--- (1 - af™Vu) ifj =i,
"l if j #i.
WM := V,(P): the unique minimal affinization for A
(Kirillov-Reshetikhin (KR) module)
KR modules have several good properties:
(i) T-system, Q-system,
(i) Fermionic character formula,
(ii) having crystal basis.
Minimal affinizations also have good properties?
(cf. extended T-system for B, by Mukhin-Young).
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Demazure module

= ¢ ® C[t,t™1] ® CK @ Cd: affine Lie algebra,
=bd CKad Cdd g ® tC[t]: Borel subalgebra,

0]
b
\7(A): simple highest weight module of § with h.w. A € P,.
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Demazure module

3 =¢® C[t, t™}] & CK @ Cd: affine Lie algebra,

b=bd CKd Cdd g ® tC[t]: Borel subalgebra,

V(A): simple highest weight module of g with h.w. A € P,.
Let& € P.

There exists a unique A € P, and w € W such that

& =w(A).

Definition

Let O # V; € V(A),. The b-submodule

D) := UV, € V(A)

is called a Demazure module.
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character formular for  D(£)

For a'g-module V and a b-submodule D € V, we set
FD:=UDMOCFH)D foriel:={0jUl.
In many cases, ch#; D = D;(ch D) follows where

f —e“s(f)
Di(f) := B (Demazure operator).
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character formular for  D(£)

For a'g-module V and a b-submodule D € V, we set
FD:=UDMOCFH)D foriel:={0jUl.
In many cases, ch#; D = D;(ch D) follows where

f —e“s(f)
Di(f) := B (Demazure operator).

If £(hj) = 0, we have
FiD(€) = U[® ® Cfi)ve = U@)Vs = D(s¢).
Hence if ¢ = w(A) andw = s, --- S, is reduced,

chD(§) = chF, -+« Fi,Cvp = Dy, -+ D (€Y).
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Restricted limit

M : Minimal affinization (Uq(Lg)-module)

classical limit

M;: Lg(= ¢ ® C[t, t71])-module

Regard M; as a ¢g[t] := g ® C[t]-module by restriction.
There exists a € C such that

g®@(t+a"M; =0 forN>>0.

Define 74: g[t] = g[t] by Ta(g® t") = g® (t + a)", and
M := ,(M1)  (Restricted limit).

M is a Z-graded ¢[t]-module. We have

chM = ch M.
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KR module case: Motivation of Main result

Ao € P,: fundamental weight of g,
g=n,®hdn_, Wp € W: longest element,
ti := (aj,@;)/2fori € | (normalized by (long,long) = 2),

W™ Restricted limit of the KR module W™,
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KR module case: Motivation of Main result

Ao € P,: fundamental weight of g,
g=n,®hdn_, Wp € W: longest element,
ti .= (@j,aj)/2fori € | (normalized by (long, long) = 2),

W™ Restricted limit of the KR module W™,

Theorem (Chari, Chari-Moura, Di Francesco-Kedem)

0) WiMis a cyclic g[t]-module with defining relations

n[tlv=0, h® t"v= mdéwi(h), tn_[tlv=0,
fim+lV= fi®tv=0, ij=O(j #1).
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KR module case: Motivation of Main result

Ao € P,: fundamental weight of g,
g=n,®hdn_, Wp € W: longest element,
ti .= (@j,aj)/2fori € | (normalized by (long, long) = 2),

W™ Restricted limit of the KR module W™,

Theorem (Chari, Chari-Moura, Di Francesco-Kedem)

0) WiMis a cyclic g[t]-module with defining relations
n[tlv=0, h® t"v= mdéwi(h), tn_[tlv=0,
fim+lV= fi®tv=0, ij=O(j #1).

(i) _
W™ = D(mwo(@i) + [Mti1Ao),

where r.h.s extends to a g[t]-module.
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Main results

Assume that M, is a minimal affinization for A = Y}, m@;.

Theorem

() When gis B, or C,,, I\L is a cyclic g[t]-module with
defining relations

n[tlv=0, h® t"v=40a(h)v, t>n_[tlv=0,
f™v=0(el), f,@tv=0(@eAl),

where AV = (3, kiai | ki < 1} € A,.
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Main results

Assume that M, is a minimal affinization for A = Y}, m@;.

Theorem

() When gis B, or C,,, I\L is a cyclic g[t]-module with
defining relations

n[tlv=0, h® t"v=40a(h)v, t>n_[tlv=0,
f™v=0(el), f,@tv=0(@eAl),

where AV = (¢ kiai | ki < 1} € A,.
(i) When g is By, I\Zl is isomorphic to the submodule of

D(m1W0(’lD'1) + [m1t1'|A0)®- @ D(mnWO(’(D'n) + [mntn'le)

generated by Vimywo(w1)+Tmyti 1A ®:--® Vimawo(w1)+[Mntn1Ao-
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A similar result of (ii) also holds for C,,.
However, we need to modify the weights of Demazure
modules so that the sum of coefficients become even.
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A similar result of (ii) also holds for C,,.
However, we need to modify the weights of Demazure
modules so that the sum of coefficients become even.

Ex. n =4, 1 = 8w, + 6w, + 5w;3 + 5w,.
M, = the submodule of

D(Wo(7@1 + @2) + 4Aq) ® D(Wo(5@2 + @3) + 3A0)
® D(4wo(@3) + 2A0) ® D(Wo(5@4 + @1) + 6A).
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A similar result of (ii) also holds for C,,.
However, we need to modify the weights of Demazure
modules so that the sum of coefficients become even.
Ex. n =4, 1 = 8w, + 6w, + 5ws + 5w,.
I\L = the submodule of
D(Wo(7t1 + @) + 4A0) ® D(Wo(5@> + w@3) + 3A0)
® D(dwy(@3) + 2A0) ® D(Wo(5@4 + @1) + 6Ag).

Theorem
When g is D, and #{min. aff.} = 1 or 3, similar results hold.
(They are formulated case by case, and here omit the detalil.)

For B, these are conjectured (and partially proved) by
[Moura, "10].
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Corollaries

From the theorem, we obtain two corollaries.
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Corollaries

From the theorem, we obtain two corollaries.

First, let us consider the limit = oo of I\L.
Then the relations fimi”v = 0in (i) vanish, and we have

A—oc0

“M, > U(n-@@(fa®t))”.

()
a¢A+

Corollary
When g is B, or C,,, we have

. = 1 1
lim e*ch M, = I—[ — —
A—oco aeA, 1 — a¢A(1) 1 - e

This is conjectured in the recent preprint by [Mukhin-Young].
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For simplicity, assume g is B,.
7. diagram auto. changing the nodes O and 1.
It follows that

the submodule of D(MWg(@1) + [Mt1]1A0)®
e ® D(mnWO(wn) + rmntn1AO)
= FuoeT Fri,n-11(Crmuao ® T°F1,n-11(Crpa®
«++ ® T F1,n-11(Crmy/2180+28m) * * )

where Fi -1y := F1F 2+ Fno1, @a = 0if m, is even and
a = 1 otherwise.

Corollary

ch My = Dy Dy -1y (€™ - 7Dy, -1y (€™
co e 7Dy gy (M2 WA L),
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brief sketch of the proof of main theorem

For simplicity, assume g is By,
R(A2): g[t]-module in Theorem (i),
T(A): g[t]-module in Theorem (ii).
goal: R(A) = M, = T(Q).
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brief sketch of the proof of main theorem

For simplicity, assume g is By,

R(A2): g[t]-module in Theorem (i),

T(A): g[t]-module in Theorem (ii).

goal: R(A) = M, = T(Q).

oStep 1: Prove R(1) » M, by checking M, satisfies
the relations of R(A).
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brief sketch of the proof of main theorem

For simplicity, assume g is By,

R(A2): g[t]-module in Theorem (i),

T(A): g[t]-module in Theorem (ii).

goal: R(A) = M, = T(Q).

oStep 1: Prove R(1) » M, by checking M, satisfies
the relations of R(A).

oStep 2: Prove M, - T(A) as follows:

(Wl,ml Q- ®Wn,mn)* _3) M; = M/l _3) Wl,m1 Q- ®Wn,mn

g1 — 3
iM,l—)

D(mWo(@1) + [t1M]Ag) ® - -+ ® D(MyWo(w@n) + [taM,TAg).
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oStep 3: Prove T(1) » R(A).
Recall that

T(/l) = ?WOT*ﬂl,n—l] (lel\o ® T*?[l,n—ll (szAo®
2+ @ T F11,0-1)(Crmy/2180+280) * * *))-

Using this, determin the defining relations of T(A) recursively.
From this, T(42) -» R(Q) follows.
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oStep 3: Prove T(1) » R(A).
Recall that

T(/l) = ?WOT*ﬂl,n—l] (lel\o ® T*?[l,n—ll (szAo®
2+ @ T F11,0-1)(Crmy/2180+280) * * *))-

Using this, determin the defining relations of T(A) recursively.
From this, T(42) -» R(Q) follows.

Thank you for your attention!
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