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Abstract— In this paper we undertake recognition of online 
unconstrained cursive handwritten English words. In contrast 
to popular dynamic programming or HMM-based approaches 
we propose a Conditional Random Field (CRF) driven beam 
search strategy applied in a combined segmentation-and-
recognition framework. First, a candidate segmentation lattice 
is built using over-segmented primitives of the word patterns. 
Recognition is accomplished by synchronously matching 
lexicon words with nodes of the lattice. Probable search paths 
are evaluated by integrating character recognition scores with 
geometric and spatial characteristics of the handwritten 
segments in a CRF (conditional random field) model. To make 
computation efficient, we use beam search to prune the set of 
likely search paths. This overall system has been benchmarked 
on a new publicly available dataset - IBM_UB_1 as well as on 
the existing UNIPEN dataset for comparison.  

Keywords—recognition; trie-lexicon; beam search; 
Conditional Random Field; online; cursive; unconstrained 
handwriting (key words). 

I. INTRODUCTION 
The pervasiveness of mobile touch screen computing 

devices like tablets and smartphones has led to a push 
towards more fluid interaction with these electronics. A 
natural way of entering text is by writing. This has ushered 
the development of applications that seek to recognize 
electronic handwritten content. Google’s recently launched 
‘Google-handwrite’ feature facilitates handwritten search 
queries [1]; also, the German automotive manufacturer Audi 
equipped a few of their models with handwriting-supportive 
on-board computers to take in user instructions as an 
alternative to pressing buttons [1]. An important issue with 
such applications is that technology should be robust to 
recognizing handwriting with all the intrinsic stylistic issues 
and noise peculiar to a person’s writing rather that requiring 
the user to modify his/her writing style to accommodate the 
system. Neither should it require person-specific, extensive 
initial training. Only then can it be looked at as a natural 
user experience. Hence, creating a writer-independent, real-
time, online, cursive handwriting recognition system is 
necessary. This forms the main goal of the current research. 
The system we describe in this paper requires minimal pre-
processing of data for stylistic normalizations and adopts a 

Conditional Random Field driven beam search algorithm 
that in turn, uses a trie-structure to efficiently search through 
lexicon entries. We build and test this system on a new 
publicly available dataset, namely, IBM_UB_1 [2]. This 
data was collected on the CrossPad™ device which was 
modeled as a notepad where users wrote on actual paper 
using a special pen. Thus, samples in this dataset reflect the 
variety and complexity involved in real life handwriting. 

II. MOTIVATION 
When dealing with automatic recognition of writing, a 

number of issues arise that vary in complexity and nature 
depending on the mode of data capture (online or offline), 
pattern of writing (discrete, cursive, mixed), representation 
of data to the recognizer (characters, sub-characters, word-
level features etc.) and the underlying objective of the 
recognition task [3]. In the online mode, the main objective 
is to recognize the word as the user writes it [4] i.e., real-time 
recognition. This requires fast processing algorithms. With 
this objective in mind we have taken two design decisions – 
(1) we build our lexicon using a trie-structure that speeds up 
processing considerably in comparison to a flat-structure as 
shown in [5], and, (2) we use a beam search algorithm that 
prunes out lexicon paths that are not likely to yield good 
results. This is in contrast to past research approaches which 
rely on performing an exhaustive search of all words in the 
lexicon. Examples of such approaches include the HMM-
based models in [6] and [7] as also in the work of Graves et 
al. [8] who use a recurrent neural network (RNN) to 
recognize unconstrained English words in sentences.  

With regard to data representation, there are two broad 
approaches to recognize written words. One, which is often 
called the analytical approach, treats a word as a sequence of 
sub-units (such as characters, strokes etc.). It first breaks the 
word down to basic units, analyzes them, and ties them 
together [9]. For example, in the HMM based systems of Hu 
et al. [7] and Liwicki et al. [6] each character is modeled as a 
separate HMM and lexicon word HMMs are constructed by 
concatenating character HMMs. In contrast, the other 
approach treats a word as a whole indivisible unit and aims 
to recognize it using characteristics of the entire word. This 
is referred to as the holistic or word-based approach [9]. The 
main advantage of an analytical approach is that a large 
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(a)    (b) 
Figure 1: Preprocessing. (a) Original word (b) Preprocessed word – 
black dots denote feature points, red denote pen-down/up; blue and 
green denote maxima and minima respectively.   

number of words can be modeled using a finite set of sub-
units such as characters, and therefore, we opt for an over-
segmentation based algorithm that divides each word into 
primitive segments (character or part of a character) that are 
later merged in an integrated segmentation-and-recognition 
framework. However, breaking apart a word into candidate 
character segments poses significant challenges. This is 
especially the case for words written either entirely in cursive 
or a mixed style [4]. Thus, in order to better identify 
characters in the word pattern, we use a model-driven 
(Conditional Random Field) approach that combines shape 
and geometric features of likely primitives to construct 
possible character segments and simultaneously recognize 
the word. To the best of our knowledge the only other CRF 
implementation for English word recognition pertains to 
offline handwriting [10]. Shetty et al.’s approach also 
significantly differs from ours in that they employ dynamic 
programming as opposed to our trie-lexicon based beam 
search. Moreover, our lexicon is over an order of magnitude 
larger in comparison (5000 vs. 300).  

Following our motivation and design choices, we now 
explain the recognition system in detail below. 

III. PREPROCESSING  AND OVER-SEGMENTATION 
Given a word, we first normalize it to a predetermined 

height and extract feature points using the method described 
in [11]. The feature points are so extracted that the overall 
shape of the word pattern as well as the pen-down and pen-
up points of each stroke are retained while simultaneously 
down-sampling the number of online coordinate points 
substantially. Subsequently, we remove delayed strokes and 
detect the baseline and corpus line of the word using 
regression lines that approximate the local minima and 
maxima of the stroke trajectory as described in [5] (Figure 
1). We then set the ‘pen-down’, ‘pen-up’ and the ‘minima’ 
and ‘maxima’ points as candidate segmentation points 
P={p1, p2, p3,…, pg} which are used to over-segment the 
word into primitives. 

 
 
 
 
 

 
 

IV. RECOGNITION SYSTEM 

A. Candidate lattice construction 
The first module of the recognition system involves 

creating a candidate lattice for the word to be recognized 
from the over-segmented primitives. One or more 
consecutive primitive segments are combined to form a 
candidate (probable) character pattern. All possible sequence 
combinations of these candidate character pattern strings are 
represented in a lattice where each node in the lattice denotes 
a candidate character pattern and each edge denotes a 
segmentation point leading to the next pattern in the 
sequence. In order to skip ligatures, we define an edge such 

that each candidate character pattern that exists between 
segmentation points pk and pl (k, l  1~g) is followed by 
candidate character patterns that start from segmentation 
point pl+1 (instead of segmentation point pl). We also do not 
start a candidate character pattern from a pen-down point and 
do not end a candidate character pattern at a pen-up point. 
Figure 2 shows a segmentation candidate lattice (henceforth 
referred to as ‘lattice’) for a sample word. 

Paths in the lattice are assumed to end at a terminal node. 
For each node in the lattice a vector of possible lengths to the 
terminal node is calculated. This is done by first setting the 
length of all candidate nodes with the final primitive segment 
as one and then working backwards one level at a time. Thus, 
for each preceding node, the length vector is calculated by 
adding one to the length of its succeeding nodes in the lattice 
sequence. This is shown in Figure 2, where the numbers in 
each node box refer to the possible lengths. This length 
vector is used in conjunction with the lexicon to prune out 
unlikely search paths (i.e., lexicon words with lengths 
different from that of the current lattice path) thereby 
improving both recognition accuracy and speed. 

B. Search and Recognition 
The second module involves matching sequences in the 

lattice with entries in the lexicon. For this purpose, the 
lexicon is set up as a trie [5] (Figure 3). In the lattice, the 
search space is expanded for each depth (or level) by 
synchronously matching every node at a particular depth to 
characters at a similar depth in the trie. This is done by 
restricting the search to only those word paths in the trie that 
have the same preceding path sequence as well as the same 
succeeding path lengths as that of the lattice node being 
expanded. Each search path ending at a matched node-
character pair (probable word string) is evaluated according 
to a path evaluation criterion set by the CRF model detailed 
in the next section. Here, adopting a beam search, a pre-
specified ‘beam width’ is used to prune the search paths at 
every depth level, i.e., for a beam width of ‘n’, at every level 
the paths with the top ‘n’ scores are retained. All other paths 
outside of this width are pruned away.  

 
 Figure 2: Segmentation Candidate Lattice 
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We walk through the above described character-
synchronous search procedure using a synthetic example 
(Figures 2, 3 and 4). In Figure 4, d1 - d4  represent the depth 
levels in the search space. Starting with the root node, we 
observe that lattice nodes (1), (2) and (3) (Figure 2) are 
expanded synchronously at depth d1 for possible character 
matches from the lexicon (Figure 3). At N1-1 lattice node (1) 
can be matched to three possible characters – ‘n’, ‘r’ and ‘t’. 
The case is similar for N1-2. At N1-3 since the length vector 
for node (3) accommodates a length-to-terminal of 5, 4 or 3 
and the lexicon paths from ‘t’ do not match these possible 
lengths (they possess lengths of 2 or 6), we drop these paths. 
This forms the expansion for depth d1 where we have eight 
pattern-character matches in total. At this stage, all eight 
paths are evaluated according to the path evaluation 
criterion and a few top scoring paths are selected while 
others are pruned out. The number of selected paths is called 
the beam width. In our synthetic example the beam width is 
two and for node (2), ‘r’ is selected whereas for node (3), ‘n’ 
is selected (highlighted in red in Figure 4). Similarly, at 
depth d2 this process is repeated to expand the search. At 
depth d2, following the lattice, we note that for node (2) the 
possible successor nodes are (11), (12), (13), (14) and (15) 
(which refer to N2-1, N2-2, N2-3, N2-4 and N2-5 respectively) 
whereas for node (3), the possible successor nodes are (16), 
(17), (18), (19) and (20) (which refer to N2-6, N2-7, N2-8, N2-9 
and N2-10 respectively).  For N2-1, the two possible character 
categories are ‘a’ and ‘o’ and both are retained since paths 
from both satisfy the length requirement of node (11). At  
N2-2, the two possible lexicon characters are ‘a’ and ‘o’. 
Here, only one satisfies the length requirement of node (12) 
(‘o’ which has the length 3). Hence, the path from ‘a’ is 
dropped. Similarly we process the cases for N2-3 up to N2-10 
for depth d2. Finally, this expansion is repeated for depth d3 
and d4. At d4, the path ending at node (35) – ‘w’ pair is 
carried forward from d3 because ‘w’ is a terminal node in 
the lexicon (as long as this path score falls within the beam 
width). This procedure yields two candidates – ‘note’ and 
‘new’ for recognition.  

  
It may be observed here that a particular candidate character 
pattern (lattice node) may appear in several search paths 
(possible word sequences). This would require matching of 
the same node with possible character matches from the trie 
for different path evaluations. Evaluating such node-

character matches using a character recognizer requires 
extraction of feature points from the pattern primitives. In 
order to avoid redundant processing, once a node’s features 
are extracted, we store them. These are then used in 
subsequent calls. Additionally, for a node and a character 
category, we store the recognition score at the first 
recognition instance and use this stored node-character pair 
score when called upon for subsequent evaluations. In our 
experiments, these steps greatly improved recognition speed 
(by about eight times).  

 
 

V. CRFS FOR WORD RECOGNITION 

A. CRFs on Segmentations 
Consider an input word pattern X which is over-

segmented into a sequence of primitives using a set of 
candidate segmentation points P={p1, p2, p3,…, pg}. 
Relating this to the segmentation lattice described earlier, 
one can see that a start-to-end path on the lattice is 
analogous to a probable segmentation sequence Si of X. 
Further, assume that Y refers to the label sequence of Si.  

 
 
Thus, for a given word, there are many probable 

segmentations {S1, S2, S3,…,Sm}, where each Si={si
1, si

2, 
si

3,…,si
n_i} and si

j denotes a candidate character pattern 
between segmentation points pk and pl (k, l  1~g ). For each 
Si we construct a neighborhood graph gi (Figure 5), such that 
each node denotes a candidate character pattern and each link 

Figure 3: Lexicon Trie Figure 5: Neighborhood graphs of Probable Segmentations 

Figure 4: Character Synchronous Search 
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represents the relationship between neighboring candidate 
character patterns. Let (si

j-1,si
j) denote a pair of neighboring 

candidate characters si
j-1 and si

j. In our CRF framework, si
j 

and (si
j-1,si

j) correspond to unary (single) and binary (pair-
wise) cliques, respectively.  

From the definition of CRF, P(Y|Si,X) can be 
approximated by an arbitrary real-valued energy function 
E(X,Si,Y,N,�) with clique set N and parameters � as: 

� Λ−=
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Since Z(Si,X), the normalization constant does not depend 
on Y, it may be ignored if we do not require strict 
probability values. Then, the problem of finding the best 
label Y�, that involves maximizing P(Y|Si,X), becomes 
equivalent to minimizing the total graph energy: 
 
Y* = argmaxy P(Y |Si,X) = argminy E(X, Si, Y, N,�)       (2) 
 
 Utilizing only unary and binary cliques in our CRF 
model, the total energy function can be defined as 
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where ),( 1),( 1 jj
k

ss yyf
jj −−

 are feature functions on a binary 
clique (si

j-1,si
j), �={�k} are weighting parameters, yj-1 and yj 

denote the labels of si
j-1 and si

j, respectively. Without loss of 
generality, in eq. (3) we use only binary cliques to describe 
the feature functions as we assume that they (si

j-1,si
j)  

subsume unary cliques si
j . Here, the total energy function is 

used to measure the plausibility of Y, and the smaller 
E(X,Si,Y,N,�) is, the larger will P(Y|Si,X) be. 

In the word recognition task the focus now is on selecting 
the best path from all possible segmentations {S1, S2, 
S3,…,Sm}. Since all paths need not be of uniform length, we 
need to normalize the path scores. Therefore, we use the 
following path evaluation criterion to select the best path 
from all segmentations-cum-recognitions.  

),(

i
i

),,,,(),,(
XSi

N
NYSXEXYSEC Λ=

                       (4) 

Where ),( XSi
N  denotes the number of binary cliques (length 

of word).  

B. Parameter Learning 
We apply the MCE criterion [12] optimized by stochastic 

gradient descent [13] to find the optimal parameter vector � 
by maximizing the difference between the evaluation 
criterion of the most confusing (Si,Y) and that of the correct 
one:  

1)1()�(

)),,()),,(�(min(),�(
−−+=

−=
x

ttifMCE

ex

XYSECXYSECXL        

 (5) 

where EC(St,Yt,X) and ECf(Si,Y,X) are the evaluation criteria 
of the true path and of the most confusing path respectively.  

C. Feature Functions 
In CRF, feature functions are used to capture the node 

attributes (unary) and local dependencies between nodes 
(binary in our case).  Further, they can be broadly classified 
into class-relevant/irrelevant on the basis of 
dependence/independence on the character class.   

In our model we use two character recognition scores 
and five geometric feature functions. Of the two character 
recognition scores for each candidate pattern, one is given 
by a P2DBMN-MQDF classifier on direction histogram 
features [14] and another is given by an MRF classifier [11]. 
Among the geometric features are three unary features that 
capture the character structure (such as the number of down 
strokes), size (height, width) and its relative position in the 
word (distance from the center line). The binary feature 
functions measure overlap and positional differences 
between adjacent character patterns. Though the latter is to 
be calculated for all possible pairs of characters, we simplify 
the process by clustering the characters into four super-
classes according to the mean vector of their unary position 
features. Each of these geometric features are extracted as 
feature vectors and transformed to log-likelihood scores 
using quadratic discriminant function (QDF) classifiers. The 
feature functions are summarized in Table 1. 

TABLE I.  SUMMARY OF FEATURE FUNCTIONS 
Type Features Classifier

f1 Unary class-rel. Character shape P2DBMN-
MQDF

f2 Unary class-rel. Character structure MRF
f3 Unary class-rel. Unary geometric (Down stroke 

number and inner gap) 
QDF

f4 Unary class-rel. Unary geometric (Character size) QDF
f5 Unary class-rel. Unary geometric (Single-character 

position) 
QDF

f6 Binary class-irrel. Binary geometric (Pair-character 
position) 

QDF

f7 Binary class-rel. Binary geometric (horizontal
overlap)

QDF

VI. EXPERIMENTATION 
In order to build and empirically validate our model we 

concurrently utilized two publicly available datasets – IBM 
_UB_1 and UNIPEN [15]. We chose this concurrent 
approach in order to overcome the absence of true character 
segmentation points for words in the IBM_UB_1 dataset. 
Further, this also helped us benchmark against an already 
existing and widely adopted handwriting dataset (UNIPEN).  

IBM_UB_1 consists of a twin-folio structure where each 
author-specific file consists of a summary-query pair. The 
summary is a full page of unconstrained cursive writing 
whereas the query page consists of approximately 25 
handwritten words appearing in the summary counterpart. 
For this research we used only the data from the query pages 
which is at the word-level granularity.  

Within the UNIPEN dataset we found that a subset of 
samples in the train_r01_v07 folder were shared across two 
categories – isolated characters (Benchmark #3) and isolated 
words (Benchmark #6). Specifically, the “art” folder with 6 
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writers, “cea” with 6 writers, “ceb” with 4 writers and, “kai” 
with 28 writers. By mapping coordinate information from 
character to word categories for these samples, we were able 
to obtain words samples with true character-level 
segmentation labels. Using this data (14,691 characters, 
2,127 words, 44 writers), we trained our CRF-based 
framework to obtain initial (a) weighting parameters and (b) 
QDF classifiers of the geometric feature functions. With this 
initialized model and a lexicon of a single word (the ground 
truth word) we were able to deduce the approximate 
segmentation for each word in the IBM_UB_1 dataset. The 
creation of character-level segmentation points for words in 
IBM_UB_1 represents the first phase of experimentation. 

In the second phase, we retrained and rebuilt our model 
using the updated IBM_UB_1 data. For this we selected four 
pages at random from 20 writers as testing data and used the 
remainder for training. Due to the data-intensive nature of 
CRF training, a majority of the data was used for training. 
The training set consisted of 61,105 words and 355,895 
characters across 62 categories (digit, uppercase and 
lowercase Latin alphabet), while the test set consisted of 
1,795 words and 10,987 characters. Further, we used the 
above retrained model for testing on the UNIPEN subset too 
to provide results for comparison (Table 2). For both 
experiments the beam band is set at 1000. 

TABLE II.  RECOGNITION RESULTS 

Dataset Lexicon Size 
(words) 

Test Set Size 
(words) 

Recognition 
Rate 

IBM_UB_1 5000 1795 78.72%

UNIPEN 2127 2127 92%
 

Though we provide recognition rates for the UNIPEN 
dataset, it must be noted that it consists primarily of 
laboratory samples and is not reflective of free, 
unconstrained handwriting from the field. The only other 
relatively close dataset to IBM_UB_1 is the IAM-OnDB 
dataset. Here too, since the dataset consists of sentences and 
not individual words we are unable to perform appropriate 
benchmark tests. Extant research using IAM-OnDB has 
relied upon language models for enhanced recognition 
performance [6, 8]. Nevertheless, our model – without the 
advantage of language models – compares favorably (Table 
3). A second issue to note is that in [8], which uses RNN 
with a language model, the metric used for assessing 
recognition is similar to string matching using Levenshtein 
distance. This measure allows for more differences in 
characters within a word and thus is more forgiving than a 
simple binary correct/incorrect metric. Our results are 
presented using the more stringent correct/incorrect metric.  
TABLE III.  ONLINE UNCONSTRAINED ENGLISH WORD RECOGNITION 

COMPARATIVE RESULTS 

Dataset Data Type Model Recognition 
Rate 

IBM_UB_1 Word Level CRF Beam  78.72%

IAM OnDB Sentence Level HMM + LM 70.8% 

IAM OnDB Sentence Level RNN + LM 79%  

Recognition results with different combinations of feature 
functions are summarized below (Table 4). As evident, the 
P2DBMN-MQDF and MRF based features and search length 
restrictions contribute significantly to overall accuracy. 

TABLE IV.  EXPERIMENT RESULTS 

Method 
Perfor. 

Without 
f1 

Without 
f2 

Without 
f3-f7 

Without 
length 

restrictions

Using all 
feature 

functions
Word rec. 
rate 71.92% 72.53% 77.05% 72.70% 78.72%

VII. CONCLUSION 
We explored a CRF-driven beam search method to 

recognize unconstrained cursive online English words. 
Combining a trie-lexicon with a character-synchronous 
lattice search algorithm, we achieve recognition rates that 
compare favorably to the current state of the art. Our 
contribution is two-fold: (a) application of a beam search 
strategy to enable efficient processing of the search space, 
and, (b) merging beam search with a CRF model that 
combines both feature probability scores and character 
recognition scores to improve performance. This, we 
believe, is a promising avenue for future research.  
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