
Segmentation Based Online Word Recognition: A
Conditional Random Field Driven Beam Search

Strategy
Arti Shivram1, Bilan Zhu2, Srirangaraj Setlur1, Masaki Nakagawa2 and Venu Govindaraju1

1Center for Unified Biometrics and Sensors, Department of Computer Science and Engineering, University at Buffalo, NY
2Department of Computer and Information Sciences, Tokyo University Agriculture and Technology, Tokyo, Japan

{ashivram, setlur, govind}@buffalo.edu, {zhubilan,nakagawa}@cc.tuat.ac.jp

Abstract— In this paper we undertake recognition of online
unconstrained cursive handwritten English words. In contrast
to popular dynamic programming or HMM-based approaches
we propose a Conditional Random Field (CRF) driven beam
search strategy applied in a combined segmentation-and-
recognition framework. First, a candidate segmentation lattice
is built using over-segmented primitives of the word patterns.
Recognition is accomplished by synchronously matching
lexicon words with nodes of the lattice. Probable search paths
are evaluated by integrating character recognition scores with
geometric and spatial characteristics of the handwritten
segments in a CRF (conditional random field) model. To make
computation efficient, we use beam search to prune the set of
likely search paths. This overall system has been benchmarked
on a new publicly available dataset - IBM_UB_1 as well as on
the existing UNIPEN dataset for comparison.

Keywords—recognition; trie-lexicon; beam search;
Conditional Random Field; online; cursive; unconstrained
handwriting (key words).

I. INTRODUCTION
The pervasiveness of mobile touch screen computing

devices like tablets and smartphones has led to a push
towards more fluid interaction with these electronics. A
natural way of entering text is by writing. This has ushered
the development of applications that seek to recognize
electronic handwritten content. Google’s recently launched
‘Google-handwrite’ feature facilitates handwritten search
queries [1]; also, the German automotive manufacturer Audi
equipped a few of their models with handwriting-supportive
on-board computers to take in user instructions as an
alternative to pressing buttons [1]. An important issue with
such applications is that technology should be robust to
recognizing handwriting with all the intrinsic stylistic issues
and noise peculiar to a person’s writing rather that requiring
the user to modify his/her writing style to accommodate the
system. Neither should it require person-specific, extensive
initial training. Only then can it be looked at as a natural
user experience. Hence, creating a writer-independent, real-
time, online, cursive handwriting recognition system is
necessary. This forms the main goal of the current research.
The system we describe in this paper requires minimal pre-
processing of data for stylistic normalizations and adopts a

Conditional Random Field driven beam search algorithm
that in turn, uses a trie-structure to efficiently search through
lexicon entries. We build and test this system on a new
publicly available dataset, namely, IBM_UB_1 [2]. This
data was collected on the CrossPad™ device which was
modeled as a notepad where users wrote on actual paper
using a special pen. Thus, samples in this dataset reflect the
variety and complexity involved in real life handwriting.

II. MOTIVATION
When dealing with automatic recognition of writing, a

number of issues arise that vary in complexity and nature
depending on the mode of data capture (online or offline),
pattern of writing (discrete, cursive, mixed), representation
of data to the recognizer (characters, sub-characters, word-
level features etc.) and the underlying objective of the
recognition task [3]. In the online mode, the main objective
is to recognize the word as the user writes it [4] i.e., real-time
recognition. This requires fast processing algorithms. With
this objective in mind we have taken two design decisions –
(1) we build our lexicon using a trie-structure that speeds up
processing considerably in comparison to a flat-structure as
shown in [5], and, (2) we use a beam search algorithm that
prunes out lexicon paths that are not likely to yield good
results. This is in contrast to past research approaches which
rely on performing an exhaustive search of all words in the
lexicon. Examples of such approaches include the HMM-
based models in [6] and [7] as also in the work of Graves et
al. [8] who use a recurrent neural network (RNN) to
recognize unconstrained English words in sentences.

With regard to data representation, there are two broad
approaches to recognize written words. One, which is often
called the analytical approach, treats a word as a sequence of
sub-units (such as characters, strokes etc.). It first breaks the
word down to basic units, analyzes them, and ties them
together [9]. For example, in the HMM based systems of Hu
et al. [7] and Liwicki et al. [6] each character is modeled as a
separate HMM and lexicon word HMMs are constructed by
concatenating character HMMs. In contrast, the other
approach treats a word as a whole indivisible unit and aims
to recognize it using characteristics of the entire word. This
is referred to as the holistic or word-based approach [9]. The
main advantage of an analytical approach is that a large

2013 12th International Conference on Document Analysis and Recognition

1520-5363/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDAR.2013.174

852

(a) (b)
Figure 1: Preprocessing. (a) Original word (b) Preprocessed word –
black dots denote feature points, red denote pen-down/up; blue and
green denote maxima and minima respectively.

number of words can be modeled using a finite set of sub-
units such as characters, and therefore, we opt for an over-
segmentation based algorithm that divides each word into
primitive segments (character or part of a character) that are
later merged in an integrated segmentation-and-recognition
framework. However, breaking apart a word into candidate
character segments poses significant challenges. This is
especially the case for words written either entirely in cursive
or a mixed style [4]. Thus, in order to better identify
characters in the word pattern, we use a model-driven
(Conditional Random Field) approach that combines shape
and geometric features of likely primitives to construct
possible character segments and simultaneously recognize
the word. To the best of our knowledge the only other CRF
implementation for English word recognition pertains to
offline handwriting [10]. Shetty et al.’s approach also
significantly differs from ours in that they employ dynamic
programming as opposed to our trie-lexicon based beam
search. Moreover, our lexicon is over an order of magnitude
larger in comparison (5000 vs. 300).

Following our motivation and design choices, we now
explain the recognition system in detail below.

III. PREPROCESSING AND OVER-SEGMENTATION
Given a word, we first normalize it to a predetermined

height and extract feature points using the method described
in [11]. The feature points are so extracted that the overall
shape of the word pattern as well as the pen-down and pen-
up points of each stroke are retained while simultaneously
down-sampling the number of online coordinate points
substantially. Subsequently, we remove delayed strokes and
detect the baseline and corpus line of the word using
regression lines that approximate the local minima and
maxima of the stroke trajectory as described in [5] (Figure
1). We then set the ‘pen-down’, ‘pen-up’ and the ‘minima’
and ‘maxima’ points as candidate segmentation points
P={p1, p2, p3,…, pg} which are used to over-segment the
word into primitives.

IV. RECOGNITION SYSTEM

A. Candidate lattice construction
The first module of the recognition system involves

creating a candidate lattice for the word to be recognized
from the over-segmented primitives. One or more
consecutive primitive segments are combined to form a
candidate (probable) character pattern. All possible sequence
combinations of these candidate character pattern strings are
represented in a lattice where each node in the lattice denotes
a candidate character pattern and each edge denotes a
segmentation point leading to the next pattern in the
sequence. In order to skip ligatures, we define an edge such

that each candidate character pattern that exists between
segmentation points pk and pl (k, l 1~g) is followed by
candidate character patterns that start from segmentation
point pl+1 (instead of segmentation point pl). We also do not
start a candidate character pattern from a pen-down point and
do not end a candidate character pattern at a pen-up point.
Figure 2 shows a segmentation candidate lattice (henceforth
referred to as ‘lattice’) for a sample word.

Paths in the lattice are assumed to end at a terminal node.
For each node in the lattice a vector of possible lengths to the
terminal node is calculated. This is done by first setting the
length of all candidate nodes with the final primitive segment
as one and then working backwards one level at a time. Thus,
for each preceding node, the length vector is calculated by
adding one to the length of its succeeding nodes in the lattice
sequence. This is shown in Figure 2, where the numbers in
each node box refer to the possible lengths. This length
vector is used in conjunction with the lexicon to prune out
unlikely search paths (i.e., lexicon words with lengths
different from that of the current lattice path) thereby
improving both recognition accuracy and speed.

B. Search and Recognition
The second module involves matching sequences in the

lattice with entries in the lexicon. For this purpose, the
lexicon is set up as a trie [5] (Figure 3). In the lattice, the
search space is expanded for each depth (or level) by
synchronously matching every node at a particular depth to
characters at a similar depth in the trie. This is done by
restricting the search to only those word paths in the trie that
have the same preceding path sequence as well as the same
succeeding path lengths as that of the lattice node being
expanded. Each search path ending at a matched node-
character pair (probable word string) is evaluated according
to a path evaluation criterion set by the CRF model detailed
in the next section. Here, adopting a beam search, a pre-
specified ‘beam width’ is used to prune the search paths at
every depth level, i.e., for a beam width of ‘n’, at every level
the paths with the top ‘n’ scores are retained. All other paths
outside of this width are pruned away.

 Figure 2: Segmentation Candidate Lattice

853

We walk through the above described character-
synchronous search procedure using a synthetic example
(Figures 2, 3 and 4). In Figure 4, d1 - d4 represent the depth
levels in the search space. Starting with the root node, we
observe that lattice nodes (1), (2) and (3) (Figure 2) are
expanded synchronously at depth d1 for possible character
matches from the lexicon (Figure 3). At N1-1 lattice node (1)
can be matched to three possible characters – ‘n’, ‘r’ and ‘t’.
The case is similar for N1-2. At N1-3 since the length vector
for node (3) accommodates a length-to-terminal of 5, 4 or 3
and the lexicon paths from ‘t’ do not match these possible
lengths (they possess lengths of 2 or 6), we drop these paths.
This forms the expansion for depth d1 where we have eight
pattern-character matches in total. At this stage, all eight
paths are evaluated according to the path evaluation
criterion and a few top scoring paths are selected while
others are pruned out. The number of selected paths is called
the beam width. In our synthetic example the beam width is
two and for node (2), ‘r’ is selected whereas for node (3), ‘n’
is selected (highlighted in red in Figure 4). Similarly, at
depth d2 this process is repeated to expand the search. At
depth d2, following the lattice, we note that for node (2) the
possible successor nodes are (11), (12), (13), (14) and (15)
(which refer to N2-1, N2-2, N2-3, N2-4 and N2-5 respectively)
whereas for node (3), the possible successor nodes are (16),
(17), (18), (19) and (20) (which refer to N2-6, N2-7, N2-8, N2-9
and N2-10 respectively). For N2-1, the two possible character
categories are ‘a’ and ‘o’ and both are retained since paths
from both satisfy the length requirement of node (11). At
N2-2, the two possible lexicon characters are ‘a’ and ‘o’.
Here, only one satisfies the length requirement of node (12)
(‘o’ which has the length 3). Hence, the path from ‘a’ is
dropped. Similarly we process the cases for N2-3 up to N2-10
for depth d2. Finally, this expansion is repeated for depth d3
and d4. At d4, the path ending at node (35) – ‘w’ pair is
carried forward from d3 because ‘w’ is a terminal node in
the lexicon (as long as this path score falls within the beam
width). This procedure yields two candidates – ‘note’ and
‘new’ for recognition.

It may be observed here that a particular candidate character
pattern (lattice node) may appear in several search paths
(possible word sequences). This would require matching of
the same node with possible character matches from the trie
for different path evaluations. Evaluating such node-

character matches using a character recognizer requires
extraction of feature points from the pattern primitives. In
order to avoid redundant processing, once a node’s features
are extracted, we store them. These are then used in
subsequent calls. Additionally, for a node and a character
category, we store the recognition score at the first
recognition instance and use this stored node-character pair
score when called upon for subsequent evaluations. In our
experiments, these steps greatly improved recognition speed
(by about eight times).

V. CRFS FOR WORD RECOGNITION

A. CRFs on Segmentations
Consider an input word pattern X which is over-

segmented into a sequence of primitives using a set of
candidate segmentation points P={p1, p2, p3,…, pg}.
Relating this to the segmentation lattice described earlier,
one can see that a start-to-end path on the lattice is
analogous to a probable segmentation sequence Si of X.
Further, assume that Y refers to the label sequence of Si.

Thus, for a given word, there are many probable

segmentations {S1, S2, S3,…,Sm}, where each Si={si
1, si

2,
si

3,…,si
n_i} and si

j denotes a candidate character pattern
between segmentation points pk and pl (k, l 1~g). For each
Si we construct a neighborhood graph gi (Figure 5), such that
each node denotes a candidate character pattern and each link

Figure 3: Lexicon Trie Figure 5: Neighborhood graphs of Probable Segmentations

Figure 4: Character Synchronous Search

854

represents the relationship between neighboring candidate
character patterns. Let (si

j-1,si
j) denote a pair of neighboring

candidate characters si
j-1 and si

j. In our CRF framework, si
j

and (si
j-1,si

j) correspond to unary (single) and binary (pair-
wise) cliques, respectively.

From the definition of CRF, P(Y|Si,X) can be
approximated by an arbitrary real-valued energy function
E(X,Si,Y,N,�) with clique set N and parameters � as:

� Λ−=

Λ−=

)'(
)),,',,(exp(),(

),(
)),,,,(exp(),|(

Y
ii

i

i
i

NYSXEXSZ
XSZ

NYSXEXSYP

 (1)

Since Z(Si,X), the normalization constant does not depend
on Y, it may be ignored if we do not require strict
probability values. Then, the problem of finding the best
label Y�, that involves maximizing P(Y|Si,X), becomes
equivalent to minimizing the total graph energy:

Y* = argmaxy P(Y |Si,X) = argminy E(X, Si, Y, N,�) (2)

 Utilizing only unary and binary cliques in our CRF
model, the total energy function can be defined as

� �
∈ =

−
−

−
−=Λ

i
i
j

i
j

jj
Sss

K

k
jj

k
sski yyfNYSXE

),(1
1),(

1

1
),(),,,,(λ

(3)

where),(1),(1 jj
k

ss yyf
jj −−

 are feature functions on a binary
clique (si

j-1,si
j), �={�k} are weighting parameters, yj-1 and yj

denote the labels of si
j-1 and si

j, respectively. Without loss of
generality, in eq. (3) we use only binary cliques to describe
the feature functions as we assume that they (si

j-1,si
j)

subsume unary cliques si
j . Here, the total energy function is

used to measure the plausibility of Y, and the smaller
E(X,Si,Y,N,�) is, the larger will P(Y|Si,X) be.

In the word recognition task the focus now is on selecting
the best path from all possible segmentations {S1, S2,
S3,…,Sm}. Since all paths need not be of uniform length, we
need to normalize the path scores. Therefore, we use the
following path evaluation criterion to select the best path
from all segmentations-cum-recognitions.

),(

i
i

),,,,(),,(
XSi

N
NYSXEXYSEC Λ=

 (4)

Where),(XSi
N denotes the number of binary cliques (length

of word).

B. Parameter Learning
We apply the MCE criterion [12] optimized by stochastic

gradient descent [13] to find the optimal parameter vector �
by maximizing the difference between the evaluation
criterion of the most confusing (Si,Y) and that of the correct
one:

1)1()�(

)),,()),,(�(min(),�(
−−+=

−=
x

ttifMCE

ex

XYSECXYSECXL

 (5)

where EC(St,Yt,X) and ECf(Si,Y,X) are the evaluation criteria
of the true path and of the most confusing path respectively.

C. Feature Functions
In CRF, feature functions are used to capture the node

attributes (unary) and local dependencies between nodes
(binary in our case). Further, they can be broadly classified
into class-relevant/irrelevant on the basis of
dependence/independence on the character class.

In our model we use two character recognition scores
and five geometric feature functions. Of the two character
recognition scores for each candidate pattern, one is given
by a P2DBMN-MQDF classifier on direction histogram
features [14] and another is given by an MRF classifier [11].
Among the geometric features are three unary features that
capture the character structure (such as the number of down
strokes), size (height, width) and its relative position in the
word (distance from the center line). The binary feature
functions measure overlap and positional differences
between adjacent character patterns. Though the latter is to
be calculated for all possible pairs of characters, we simplify
the process by clustering the characters into four super-
classes according to the mean vector of their unary position
features. Each of these geometric features are extracted as
feature vectors and transformed to log-likelihood scores
using quadratic discriminant function (QDF) classifiers. The
feature functions are summarized in Table 1.

TABLE I. SUMMARY OF FEATURE FUNCTIONS
Type Features Classifier

f1 Unary class-rel. Character shape P2DBMN-
MQDF

f2 Unary class-rel. Character structure MRF
f3 Unary class-rel. Unary geometric (Down stroke

number and inner gap)
QDF

f4 Unary class-rel. Unary geometric (Character size) QDF
f5 Unary class-rel. Unary geometric (Single-character

position)
QDF

f6 Binary class-irrel. Binary geometric (Pair-character
position)

QDF

f7 Binary class-rel. Binary geometric (horizontal
overlap)

QDF

VI. EXPERIMENTATION
In order to build and empirically validate our model we

concurrently utilized two publicly available datasets – IBM
_UB_1 and UNIPEN [15]. We chose this concurrent
approach in order to overcome the absence of true character
segmentation points for words in the IBM_UB_1 dataset.
Further, this also helped us benchmark against an already
existing and widely adopted handwriting dataset (UNIPEN).

IBM_UB_1 consists of a twin-folio structure where each
author-specific file consists of a summary-query pair. The
summary is a full page of unconstrained cursive writing
whereas the query page consists of approximately 25
handwritten words appearing in the summary counterpart.
For this research we used only the data from the query pages
which is at the word-level granularity.

Within the UNIPEN dataset we found that a subset of
samples in the train_r01_v07 folder were shared across two
categories – isolated characters (Benchmark #3) and isolated
words (Benchmark #6). Specifically, the “art” folder with 6

855

writers, “cea” with 6 writers, “ceb” with 4 writers and, “kai”
with 28 writers. By mapping coordinate information from
character to word categories for these samples, we were able
to obtain words samples with true character-level
segmentation labels. Using this data (14,691 characters,
2,127 words, 44 writers), we trained our CRF-based
framework to obtain initial (a) weighting parameters and (b)
QDF classifiers of the geometric feature functions. With this
initialized model and a lexicon of a single word (the ground
truth word) we were able to deduce the approximate
segmentation for each word in the IBM_UB_1 dataset. The
creation of character-level segmentation points for words in
IBM_UB_1 represents the first phase of experimentation.

In the second phase, we retrained and rebuilt our model
using the updated IBM_UB_1 data. For this we selected four
pages at random from 20 writers as testing data and used the
remainder for training. Due to the data-intensive nature of
CRF training, a majority of the data was used for training.
The training set consisted of 61,105 words and 355,895
characters across 62 categories (digit, uppercase and
lowercase Latin alphabet), while the test set consisted of
1,795 words and 10,987 characters. Further, we used the
above retrained model for testing on the UNIPEN subset too
to provide results for comparison (Table 2). For both
experiments the beam band is set at 1000.

TABLE II. RECOGNITION RESULTS

Dataset Lexicon Size
(words)

Test Set Size
(words)

Recognition
Rate

IBM_UB_1 5000 1795 78.72%

UNIPEN 2127 2127 92%

Though we provide recognition rates for the UNIPEN
dataset, it must be noted that it consists primarily of
laboratory samples and is not reflective of free,
unconstrained handwriting from the field. The only other
relatively close dataset to IBM_UB_1 is the IAM-OnDB
dataset. Here too, since the dataset consists of sentences and
not individual words we are unable to perform appropriate
benchmark tests. Extant research using IAM-OnDB has
relied upon language models for enhanced recognition
performance [6, 8]. Nevertheless, our model – without the
advantage of language models – compares favorably (Table
3). A second issue to note is that in [8], which uses RNN
with a language model, the metric used for assessing
recognition is similar to string matching using Levenshtein
distance. This measure allows for more differences in
characters within a word and thus is more forgiving than a
simple binary correct/incorrect metric. Our results are
presented using the more stringent correct/incorrect metric.
TABLE III. ONLINE UNCONSTRAINED ENGLISH WORD RECOGNITION

COMPARATIVE RESULTS

Dataset Data Type Model Recognition
Rate

IBM_UB_1 Word Level CRF Beam 78.72%

IAM OnDB Sentence Level HMM + LM 70.8%

IAM OnDB Sentence Level RNN + LM 79%

Recognition results with different combinations of feature
functions are summarized below (Table 4). As evident, the
P2DBMN-MQDF and MRF based features and search length
restrictions contribute significantly to overall accuracy.

TABLE IV. EXPERIMENT RESULTS

Method
Perfor.

Without
f1

Without
f2

Without
f3-f7

Without
length

restrictions

Using all
feature

functions
Word rec.
rate 71.92% 72.53% 77.05% 72.70% 78.72%

VII. CONCLUSION
We explored a CRF-driven beam search method to

recognize unconstrained cursive online English words.
Combining a trie-lexicon with a character-synchronous
lattice search algorithm, we achieve recognition rates that
compare favorably to the current state of the art. Our
contribution is two-fold: (a) application of a beam search
strategy to enable efficient processing of the search space,
and, (b) merging beam search with a CRF model that
combines both feature probability scores and character
recognition scores to improve performance. This, we
believe, is a promising avenue for future research.

REFERENCES
[1] K. Shabanova. “Do Androids dream of handwriting recognition?,”

http://www.manufacturing.net/articles/2012/10/do-androids-dream-of-
handwriting-recognition.

[2] U. a. B. Center for Unified Biometrics and Sensors, “IBM-UB Online and
Offline Multi-lingual Handwriting Data Set,” 2012.

[3] S. Connell, and A. K. Jain, “Online handwriting recognition using multiple
pattern class models,” unpublished, 2000.

[4] C. C. Tappert, and S.-H. Cha, English language handwriting recognition
interfaces: San Francisco: Morgan Kaufmann, 2007.

[5] S. Jaeger, S. Manke, J. Reichert, and A. Waibel, “Online handwriting
recognition: the NPen++ recognizer,” International Journal on Document
Analysis and Recognition, vol. 3, no. 3, pp. 169-180, 2001.

[6] M. Liwicki, and H. Bunke, “HMM-based on-line recognition of handwritten
whiteboard notes,”Frontiers in Handwriting Recognition, Proc 10th Int.
Workshop on, pp. 595-599, 2006.

[7] J. Hu, M. K. Brown, and W. Turin, “HMM based online handwriting
recognition,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 18, no. 10, pp. 1039-1045, 1996.

[8] A. Graves, S. Fernández, M. Liwicki, H. Bunke, and J. Schmidhuber,
“Unconstrained online handwriting recognition with recurrent neural
networks,” Adv. in Neural Information Processing Systems, vol. 20, pp. 1-8,
2008.

[9] S. Madhvanath, and V. Govindaraju, “The role of holistic paradigms in
handwritten word recognition,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 23, no. 2, pp. 149-164, 2001.

[10] S. Shetty, H. Srinivasan, and S. Srihari, “Handwritten word recognition using
conditional random fields.” Proc. 9th Int. Conf. Document Analysis and
Recognition, pp. 1098-1102, 2007.

[11] B. Zhu, and M. Nakagawa, “A MRF Model with parameter optimization by
CRF for on-line recognition of handwritten Japanese characters,” Proc. Doc.
Recognition and Retrieval XVIII, pp. 1-10, 2011.

[12] B.-H. Juang and S. Katagiri, “Discriminative learning for minimum error
classification,” IEEE Trans. Signal Processing, 40(12), pp. 3043-3054, 1992.

[13] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat. 22, pp. 400-407, 1951.

[14] C.-L. Liu and X.-D. Zhou, “Online Japanese Character Recognition Using
Trajectory-based Normalization and Direction Feature Extraction,” Frontiers
in Handwriting Recognition, 10th Int. Workshop on, pp.217-222, 2006.

[15] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet,
“UNIPEN project of on-line data exchange and recognizer benchmarks.”
Pattern Recognition, Computer Vision & Image Processing., Proc. of the
12th IAPR Int. Conf. on, vol.2., pp. 29-33, 1994.

856

