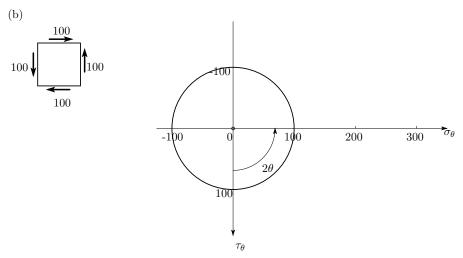
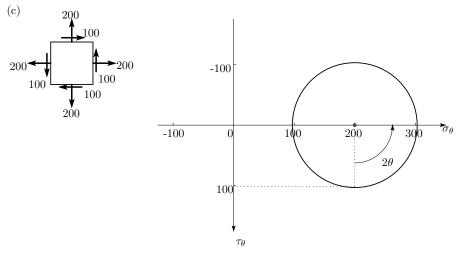
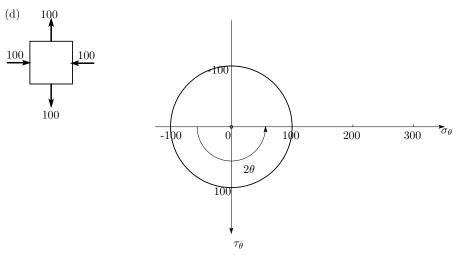
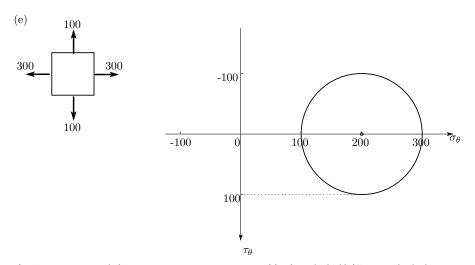

]

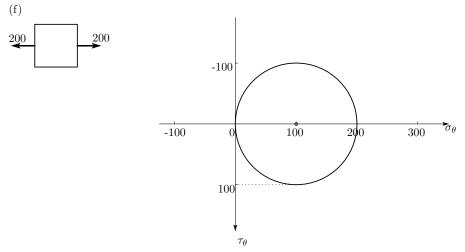

注意: この用紙を表紙として,解答はレポート用紙を用いよ.

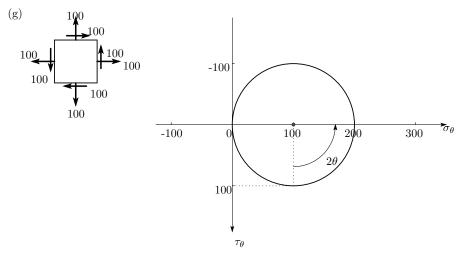
問 1 図 (a) \sim (g) に示す微小要素に働く応力状態についてそれぞれモールの応力円を描き,最大主応力とその方向 (x 軸とのなす角),最小主応力,最大せん断応力を求めよ(図の応力の単位は MPa である).


[解答例]

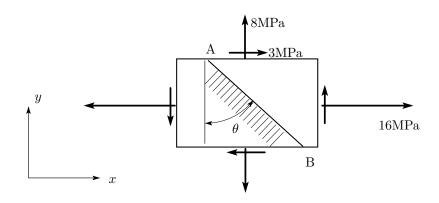

中心 (100,0) , 座標 (100,0) を通る円:この場合(等 2 軸引張)のモールの応力円は 1 点に縮退している.最大応力 $100{
m MPa}$, 任意の方向が最大主応力方向になる.最小主応力 $100{
m MPa}$, 最大せん断応力 $0{
m MPa}$


中心 (0,0) , 座標 (0,100) を通る円 : 最大応力 $100 \mathrm{MPa}$, 最大主応力方向 45° , 最小主応力 $100 \mathrm{MPa}$, 最大せん断応力 $100 \mathrm{MPa}$. このような応力状態を純粋せん断という .


中心 (200,0) , 座標 (200,100) を通る円:最大応力 $300 \mathrm{MPa}$, 最大主応力方向 45° , 最小主応力 $100 \mathrm{MPa}$, 最大せん断応力 $100 \mathrm{MPa}$

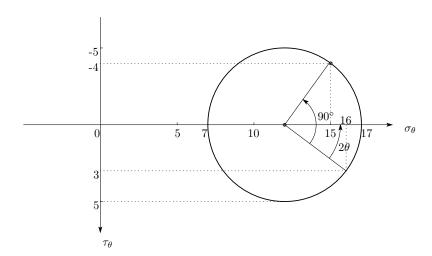

中心 (0,0) , 座標(-100,0)を通る円:この場合モールの応力円は (b) と同じになる.すなわち純粋せん断の状態.最大応力 100 MPa , 最大主応力方向 90° , 最小主応力 -100 MPa , 最大せん断応力 100 MPa

中心 (200,0) , 座標 (300,0) を通る円 : 2 軸引張応力状態 . 最大応力 300MPa , 最大主応力方向 0° (x 軸が最大主応力方向となっている) , 最小主応力 100MPa , 最大せん断応力 100MPa



中心 (100,0) , 座標 (200,0) を通る円:単軸引張状態.最大応力 $200 \mathrm{MPa}$, 最大主応力方向 0° (x 軸が最大主応力方向となっている) , 最小主応力 $0 \mathrm{MPa}$, 最大せん断応力 $100 \mathrm{MPa}$

中心 (100,0), 座標 (100,100) を通る円: 最大応力 $200 \mathrm{MPa}$, 最大主応力方向 45° , 最小主応力 $0 \mathrm{MPa}$, 最大せん断応力 $100 \mathrm{MPa}$. この場合,モールの応力円は (f) と同じになる.すなわち 45° 度方向の $200 \mathrm{MPa}$ の単軸引張と等価となる.


問 2 図のような応力状態について,モールの応力円を描け.また図の面 AB(傾き角 $\theta=45^\circ$) に働く垂直応力 σ_{θ} とせん断応力 τ_{θ} を求めてモールの円上に示せ.

[解答例]

モールの応力円は,中心が (12,0) であり,点 (16,3) を通る.これより以下の図を得る(最大主応力 $17\mathrm{MPa}$,最小主応力 $7\mathrm{MPa}$,最大せん断応力 $5\mathrm{MPa}$).

モールの応力円より , $\theta=45^\circ$ ($2\theta=90^\circ$) の面に働く垂直応力 σ_θ は $15{\rm MPa}$, せん断応力 τ_θ は $-4{\rm MPa}$.

