交通・キャンパスマップ
Tokyo University of Agriculture and Technology Division of Mathematical Sciences, Institute of Engineering  
Division of Mathematical Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology

線形代数学T
 
概要
  いくつかの数をひとまとめにして考えるとき,行列を用いると効果的に計算を行うことができます.線形代数学では行列に関する性質を学び,高等学校で習得した数学の内容を抽象的な理論と関連づけて理解することを学びます.工学の諸分野におけるさまざまな現象を記述し解析する上で,線形代数学で学習する内容は必須のものとなっています.とくに行列に関する種々の計算技術を習得することはより抽象的なベクトル空間などの諸概念を理解する助けになるので,演習をとおしてこれを実践します.

到達基準
  この講義の目標は,行列に関する諸性質を理解し,連立1次方程式,行列式,逆行列などの具体的な計算ができるようになることです.
本科目のディプロマ・ポリシーの観点:履修案内のカリキュラムマップを参照してください.

授業内容
  1. 行列:行列の定義や言葉を与える.はじめは2行2列の行列を主に用いて,行列を使って数値を扱う考え方を学ぶ.
2. 行列の演算:行列の和,積,スカラー倍を定義して,それらの性質を与える.
3. 行列の分割:行列をブロック分割し,積を見やすくする.行列と列ベクトルの積を列の1次結合の形に表すことができる.
4. 基本変形と簡約な行列,階数:連立1次方程式を解くに当たり,最も大事な基本変形と簡約化を学ぶ.行列の階数を定義する.
5. 連立1次方程式の解法:いつ解が存在するか,解が存在する場合,その求め方と表し方を学ぶ.
6. 正則行列,逆行列の計算:逆行列の定義を与え,行列が逆行列をもつための同値な条件をいくつかの言葉で述べる.逆行列の計算の仕方を学ぶ.
7. まとめ
   中間試験.
8. 置換I:行列式の定義に現れる置換とその積,単位置換,逆置換,巡回置換,互換,偶置換と奇置換について学ぶ.
9. 置換II:置換の積と分解について学び,計算できるようにする.
10. 行列式の定義と性質その1:行列式を定義する.
11. 行列式の性質その2:行列式の性質を学習し,4次以上の行列式の計算を行う.
12. 行列式の計算:行列式の計算演習.
13. 余因子行列とクラメルの公式:余因子と余因子行列を定義し,行列式の余因子展開を学ぶ.クラメルの公式を得る.
14. これまでの総演習.
15. まとめ
   期末試験.

履修条件・関連項目
  授業時間 30時間に加え、本学の標準時間数に準ずる予習と復習を行うこと.

テキスト・教科書
  1回目の講義で伝えます.

参考書
  入門線形代数 三宅敏恒 培風館

成績評価の方法
   
教員から一言
  授業時間内の演習だけでなく,教科書の各章末にある問題を積極的に解いて基礎的な計算力をしっかりと身につけて下さい.

キーワード
  行列,行列の階数,連立1次方程式,行列式,逆行列

オフィスアワー
 

  Division of Mathematical Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology
関連サイト  数理科学部門HP委員作成   
工学部 工学府 大学院工学研究院 東京農工大学