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This study measures the acoustic power loss that occurs when an acoustic wave passes1

through a tube with an abrupt change in area. It is determined that the power loss2

is proportional to the third power of the velocity amplitude, and that the propor-3

tionality coefficient depends upon the area change ratio of the tube. On the other4

hand, the proportionality coefficient is almost independent of the acoustic impedance5

and frequency in the 80-250 Hz range. Furthermore, the effect of a tapered tube in6

reducing the coefficient is experimentally investigated. Based on these experimental7

results, an empirical estimation method for the acoustic power loss is proposed and8

validated using a high-pressure-helium-filled tube.9
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I. INTRODUCTION10

When fluids flow in tubes, two types of energy loss occur: One is due to the tube length,11

whereas the other is due to geometrical irregularities, such as abrupt area change, bifurcation,12

and bend. The latter is referred to as minor loss.1–5 For unidirectional fluid flow, both types13

of losses have been investigated and are well documented in several textbooks on fluid14

dynamics. However, for oscillatory fluid flow, only few studies1–5 have addressed the minor15

loss, although energy loss due to the tube length7–9 has been well understood.16

Wakeland and Keolian3 showed an equation for the acoustic minor loss. This equation is17

based on the Bernoulli equation and is expressed as follows:18

∆W =
2

3π
ρmSK|U |3, (1)

where ∆W is the acoustic minor loss, ρm is the time averaged density of the working gas, S19

is the cross-sectional area of the tube, where the minor loss occurs, |U | is the peak amplitude20

of the oscillatory velocity averaged over the cross-sectional area of the tube, and K is the21

coefficient of the minor loss. Hence, the acoustic minor loss can be estimated if the value22

of K is known. Because K cannot be theoretically derived, there is a need for empirical23

determination.24

Abrupt area change generated by the connection of two tubes with different cross-sectional25

areas is one of the most common geometrical irregularities in acoustic systems. Morris et26

al.4 computationally investigated the acoustic minor loss in a sharp-edged expansion with27

a tube cross-section-area ratio of 0.01, and presented the flow structure at the vicinity of28

the expansion point. Based on this result, the minor loss factor was derived. Smith and29
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Swift2 experimentally investigated the acoustic minor loss with an infinite area ratio and30

elucidated the effects of a rounded edge at the connecting point. King and Smith, and Doller31

experimentally investigated the effect of a tapered tube on the minor loss, and showed the32

minor loss can be reduced by a tapered tube.5,633

One of the critical parameters of the abrupt area change is the ratio of the cross-sectional34

areas of the tubes. However, researches on the variation of the area ratio is limited as35

mentioned above. Hence, we evaluate the effect of the area ratio on the minor loss in this36

study. The minor loss is measured by changing the velocity amplitude and area ratio. It is37

confirmed that the minor loss is proportional to the third power of the velocity amplitude,38

as predicted by Eq. (1). The value of K is experimentally determined as a function of the39

area ratio. In addition, the effect of the acoustic frequency and acoustic impedance, which40

depict the oscillatory flow characteristics, is investigated. Furthermore, following King and41

Smith5, and Doller6 the effect of a tapered tube on the reduction of K is examined. Finally,42

an empirical equation is introduced for estimating the acoustic minor loss, and validated43

using a high-pressure-helium-filled tube.44

II. EXPERIMENTAL SETUP45

The schematic of the experimental apparatus is illustrated in Fig. 1. The apparatus46

comprises circular tubes A and B connected to each other at a sharp edge, and a unit47

including a speaker (FW168N, Fostex Co. Ltd.). The cross-sectional areas of tubes A and48

B are denoted by SA and SB, respectively. Tube A is connected to the speaker unit and two49

pressure sensors (PD-104, JTEKT Co. Ltd.) are mounted on the tube wall. The distance50
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FIG. 1. Schematic of the experimental setup.

between the sensors is denoted by L1, and the distance between one of the sensors and the51

connecting point (see Fig. 1) is denoted by L2. One end of tube B is closed by a brass plate52

on which a pressure sensor (PD-104, JTEKT Co. Ltd.) is mounted. The length of tube B53

is denoted by L3. The apparatus is filled with atmospheric air.54

In this experiment, the value of RAB = SA/SB or its inverse is selected as one of the55

variable parameters. Table I lists the values of the radius rA of tube A, radius rB of tube56

B, and RAB. Note that the experiments are performed under two conditions, i.e. RAB ≤ 157

and RAB > 1.58

III. MEASUREMENT METHOD59

As shown in Fig. 1, pressure is measured at two points on the wall of tube A and one60

point on the closed end of tube B. This section describes the method for evaluating ∆W61

using the three measured pressure values. This method is similar to the method used in our62

previous study10.63
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TABLE I. Radii of tube A (top row) and tube B (left column) and the corresponding RAB values

(and 1/RAB).

rB(mm)

rA(mm)
7.5 12 16 20

7.5 1 2.56 4.55 7.11

(0.39) (0.22) (0.14)

12 0.39 1 1.78 2.78

(0.56) (0.36)

16 0.22 0.56 1 1.56

(0.64)

20 0.14 0.36 0.64 1

A. Acoustic power and minor loss64

It is assumed that an acoustic field with a single frequency is formed in the circular65

tube, with the x-axis set along the length of the tube. The tube radius is assumed to be66

considerably smaller than the wavelength of the acoustic wave. For expressing the acoustic67

pressure and cross-sectional mean velocity amplitudes, the complex number P (x) and U(x)68

are used, respectively. Using P (x) and U(x), the acoustic power, which is the time-averaged69
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rate of acoustic energy transmission through the tube cross-section, is determined as70

W (x) =
S

2
Re
[
P (x)Ũ(x)

]
, (2)

where notation ˜ indicates the complex conjugate, and S is the cross-sectional area of the71

tube. If we denote the acoustic power in front and immediately behind the geometrical72

irregularity by W+ and W−, respectively, the acoustic minor loss can be expressed as73

∆W = W+ −W−. (3)

When acoustic minor loss does not occur, W+ = W−; hence, ∆W = 0.74

B. Theory75

Based on the linear acoustic theory, the momentum and continuity equations12,13 for a76

circular tube can be expressed as77

dP (x)

dx
= − iωρm

1− χυ
U(x) (4)

dU(x)

dx
= −iω [1 + (γ − 1)χα]

γPm
P (x), (5)

where ω is angular frequency, and ρm, Pm, γ, and σ are the mean density, mean pressure,78

specific heat ratio, and Prandtl number of the working gas, respectively. χα and χν are79

complex functions12–14 that are denoted below. To express these functions, we use two80

parameters, namely, the thermal relaxation time τα and viscous relaxation time τν .
14 These81

parameters are defined as82

τα = r2/(2α) (6a)

τν = r2/(2ν), (6b)
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where r is the tube radius, α is the thermal diffusivity of the working gas, and ν is its83

kinematic viscosity. For a circular-cross-section tube, functions χα and χν are expressed84

as12–1485

χα =
2J1(Yα)

YαJ0(Yα)
(7a)

χν =
2J1(Yν)

YνJ0(Yν)
, (7b)

where86

Yα = (i− 1)
√
ωτα (8a)

Yν = (i− 1)
√
ωτν . (8b)

Equations (4) and (5) can be solved analytically. With the obtained solution, the pressure87

and cross-sectional mean velocity at x = xb can be expressed by those at x = xa as11,1588 
P (xb)

U(xb)

 = M(xa, xb)


P (xa)

U(xa)

 (9)

89

M(xa, xb) ≡


m11(xa, xb) m12(xa, xb)

m21(xa, xb) m22(xa, xb)


m11(xa, xb) = cos(k(xb − xa))

m12(xa, xb) = −iZ0 sin(k(xb − xa))

m21(xa, xb) =
−i
Z0

sin(k(xb − xa))

m22(xa, xb) = cos(k(xb − xa)).

Here, k is the complex wave number and Z0 is the characteristic impedance calculated as90

k =
ω

c

√
1 + (γ − 1)χα

1− χν
, (10)
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and91

Z0 = ρm
ω

k(1− χν)
, (11)

respectively, where c is the adiabatic sound speed.92

First, let us consider the method for evaluating W+ using the pressure measured at the93

two locations on the wall of tube A. The measuring points are set as x1 and x2, respectively,94

and the junction point is set as x3, as shown in Fig. 1. From Eq. (9),95

U(x1) =
P (x2)−m11(x1, x2)P (x1)

m12(x1, x2)
. (12)

Equation (9) is represented as96 
P (x3)

U(x3)

 = M(x1, x3)


P (x1)

U(x1)

 , (13)

and hence,97 
P (x3)

U(x3)

 = M(x1, x3)


P (x1)

P (x2)−m11(x1,x2)P (x1)
m12(x1,x2)



= M(x1, x3)


1 0

−m11(x1,x2)
m12(x1,x2)

1
m12(x1,x2)



P (x1)

P (x2)

 . (14)

Substituting L1 and L2 + L1 for (x2 − x1) and (x3 − x1), respectively, in Eq. (14), we can98

obtain the pressure P and velocity U at x = x3, i.e. at the junction. With P (x3), U(x3),99

and Eq. (2), the acoustic power W+ at the connecting point tube A is obtained.100
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Next, let us consider the method for expressing the acoustic power W− at the connecting101

point of tube B. We set the closed end as x4, and modify Eq. (9) as102 
P (x3)

U(x3)

 = M(x4, x3)


P (x4)

U(x4)

 . (15)

At the closed end, the velocity becomes zero and the pressure Pclosed is measured. Substi-103

tuting x3− x4 = −L3, P (x4) = Pclosed, and U(x4) = 0 in Eq. (15), we can obtain P (x3) and104

U(x3) at the connecting point of tube B. With P (x3), U(x3), and Eq. (2), we can calculate105

W−. It should be noted that the values of P (x3) and U(x3) for calculating W− are not106

equal to the values of P (x3) and U(x3) for W+. Substituting the obtained W+ and W− in107

Eq. (3), we can evaluate the acoustic minor loss ∆W .108

IV. RESULTS109

A. Preliminary Experiment110

To verify the experimental method described in Sec. III, we perform the experiment with111

RAB = 1. Both rA and rB are set to 7.5 mm, 12 mm, 16 mm, and 20 mm, respectively. The112

lengths L1 and L2 +L3 are set to 390 mm and 750 mm, respectively. The frequency, ω/(2π),113

of the input acoustic wave is maintained at 161 Hz which is the second resonant frequency114

of the gas column in the setup. As a result of the use of the second resonance frequency, the115

velocity antinode appears between x2 and x4 rather than in the vicinity of the speaker unit.116

Although there is no cross-sectional variation, we set a virtual connecting point at the117

velocity antinode and measured W+−W−; this is denoted by δW . In Fig. 2, the measured118
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FIG. 2. Measured δW in a straight tube as a function of the velocity amplitude at the velocity

antinode.

δW is depicted as a function of the velocity amplitude |U |, where the value of r shown in this119

figure refers to the radius of the circular tube cross-section. Notably, the maximum |U | for120

each r shown in Fig. 2 is approximately equal to the maximum |U | obtained by measuring121

∆W described in Sec. IV B. As observed in Fig. 2, δW is nonzero and depends upon |U | with122

S = r2π, i.e. δW (U, S). The dotted and solid lines in Fig. 2 show functions proportional to123

|U |2 and |U |3, respectively. They indicate that δW (U, S) ∝ |U |2 when |U | < 10 m/s, whereas124

δW (U, S) ∝ |U |3 when |U | > 20 m/s. In addition, the repeatability of the measured value125

of δW was confirmed. We consider that when |U | < 10 m/s, the source of δW (U, S) is126

the underestimation of tube wall attenuation due to the viscosity and thermal conductivity127

of the gas. On the other hand, |U | > 20 m/s, δW (U, S) can be attributed to nonlinearity128

due to the large amplitude of the oscillatory velocity.16–18 When |U | is maximized for each129

r, the Reynolds number Reos determined using |U | and 2r approaches or just exceeds the130

critical value17,18 above which flow becomes turbulent. For example, when r = 7.5 mm,131
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the maximum velocity amplitude is 32 m/s, thus, Reos = 2.7 × 104, while the critical Reos132

estimated by the equation proposed by Merkli and Thoman18 is 2.3 × 104. Based on these133

preliminary experimental results, we suggest that δW (U, S) represents the additional losses134

occurring in a straight section of the tubes and assume that δW (U, S) is proportional to the135

length of the tube, L. Instead of Eq. (3), we use136

∆W = (W+ − L1 + L2

L1 + L2 + L3

δW (UA, SA)) (16)

−(W− +
L3

L1 + L2 + L3

δW (UB, SB)),

for measuring ∆W , where UA and UB are U(x3) in tube A and tube B, respectively. Note137

that the impact of the additional loss on the value of K is found to be approximately 0.15138

B. Measurement of the acoustic minor loss139

In this study, we investigate the effect of three factors on the value of K: the effect of140

the ratio of the tube cross-sectional area RAB, absolute value of the acoustic impedance141

(|Z| = |P |/|U |), and frequency (ω/(2π)).142

1. Effect of the tube cross-sectional area ratio on the acoustic minor loss coeffi-143

cient144

In the experimental setup shown in Fig. 1, the pressure and velocity amplitudes depend145

on position x. To highlight the effect of the velocity amplitude while minimizing the effect of146

the pressure amplitude, we set the connecting point in the vicinity of the velocity antinode.147
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FIG. 3. Measured acoustic minor loss. The radii of tube A and tube B are 12 mm and 20 mm,

respectively, resulting in RAB = 0.36.

According to previous research19, the velocity amplitude |U | at the connecting point in the148

narrower tube is used as the representative value.149

In Fig. 3, the measured ∆W is depicted as a function of |U |3. The experimental conditions150

are ω/(2π) = 161Hz, L1 = 390 mm, L2 = 250 mm, L3 = 500 mm, and RAB = 0.36 (rA = 12151

mm and rB = 20 mm). Figure 3 shows that the value of ∆W linearly increases with the152

increase in |U |3. When |U | = 33.4 m/s (|U |3 ∼ 37000 m3/s3), ∆W is 2.59 W. This value153

is considerably greater than the δW for straight tubes. (See data indicated by the unfilled154

circle at |U | = 33 m/s and that indicated by the filled square at |U | = 12 m/s (= 33×RAB155

m/s ) in Fig. 2.) Hence, we can conclude that acoustic minor loss is generated in the setup.156

As previously mentioned, the measured ∆W is proportional to the third power of |U |;157

hence, we can use Eq. (1), as suggested by Swift and Wakeland3? . Using the least squares158

method, the gradient of g of the obtained data is calculated to be 7.0×10−5 kg/m. From159
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Eq. (1), g can be related to the acoustic minor loss coefficient K as follows:160

K =
3π

2Siρm
g, (17)

where Si is the cross-sectional area of the narrower tube and Si = SA for this case; hence161

K = 0.60 with RAB = 0.36.162

Next, we perform the experiment with several values of RAB and determine the value163

of K. The relationship between K and RAB or 1/RAB is shown in Fig. 4. The unfilled164

symbols indicate the data under the expansion condition (RAB < 1) whereas the filled ones165

indicate the data under the contraction condition (RAB ≥ 1). It is important to note that166

when RAB > 1, 1/RAB is considered as the horizontal axis instead of RAB. As shown in Fig.167

4, the obtained value of the acoustic minor loss coefficient K decreases with the increase in168

RAB and 1/RAB. The observed dependence of K on 1/RAB smoothly connects the value169

of K numerically predicted by Morris et al.4 and that experimentally obtained by Doller6;170

Morris et al.4 reported that when 1/RAB = 0.01, K = 0.9, whereas Doller showed that when171

1/RAB = 0.03, K = 0.85. Furthermore, the data indicated by the unfilled and filled symbols172

approximately agree with each other; the maximum discrepancy is 0.18. This implies that173

the minor loss coefficient K can be set to be the same for abrupt tube expansion as well as174

contraction.175

Next, the minor loss coefficient of this study (oscillatory flow case) and that of the uni-176

directional flow case are compared. According to the textbook19, when fluid flows unidirec-177
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FIG. 4. Empirically determined acoustic minor loss coefficient K.

tionally in a tube, the minor loss coefficient becomes178

Ke = (1−RAB)2 (18)

(RAB < 1)

for the expansion condition.179

Kc = 0.5

(
1− 1

RAB

)0.75

(19)

(RAB > 1)

for the contraction condition. Because the measured result indicates that K is the same in180

the expansion and contraction cases, we represent the mean of Ke and Kc in Fig. 4 by a181

dotted line:182

K =
1

2

(
1− Ai

Aj

)2

+
1

4

(
1− Ai

Aj

)0.75

(20)

(Ai < Aj).
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FIG. 5. Acoustic impedance dependence of the minor loss coefficient.

This dotted line shows approximate agreement with the obtained experimental data; hence,183

Eq. (20) can be used as an approximation for the acoustic minor loss coefficient K.184

2. Effect of the acoustic impedance and frequency on the acoustic minor loss185

coefficient186

To investigate the effect of the absolute value of the acoustic impedance on coefficient K,187

we measure K by varying the connecting point, namely, L3; The values of L3 were set to188

0.3, 0.4, 0.5, 0.6, and 0.7 m. This implies that the connecting point is located between the189

pressure and velocity antinodes. In the experiment, RAB is maintained at 0.36 and ω/(2π)190

is 161 Hz. The measured K is plotted as a function of |P |/|U |, as displayed in Fig. 5.191

The upper limit of |P |/|U | is determined by the performance of the speaker; when |P |/|U |192

is large, large |U | is not obtained. In Fig. 5, significant dependence of K on the value of193

15



Measurement and empirical evaluation of acoustic loss

1.0

0.8

0.6

0.4

0.2

0.0

K
 

300250200150100500

frequency (Hz)

FIG. 6. Frequency dependence of the minor loss coefficient.

|P |/|U | is not obtained. This indicates that the acoustic minor loss is governed by the value194

of |U |, and that the effect of the pressure amplitude |P | on K is less.195

Further, we examine the effect of the frequency, ω/(2π), on the value of K. For a fixed196

value of RAB (= 0.36), K is measured when the frequency of the acoustic wave is varied197

from 83-253 Hz. For this experiment, the length L3 of tube B is changed such that the198

connecting point is always fixed in the vicinity of the velocity antinode. The tested values199

of L3 were 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0 m. The results (Fig. 6) indicate that the frequency200

has no significant effect on the value of K in the used frequency range.201

C. Effect of tapered tube on the minor-loss reduction202

To reduce minor loss, a tapered tube with a gradually changing cross-sectional area is203

generally employed1,5,6,20–22. In this subsection, we demonstrate the quantitative effect of204

a tapered tube on the reduction of the acoustic minor loss coefficient. As a parameter205
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θ

tube A tapered
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FIG. 7. Schematic of the used tapered tube and the definition of the taper angle θ.

depicting the tapered tube characteristics, we define the taper angle θ, as shown in Fig. 7.206

The radii of tubes A and B are fixed at 12 mm and 20 mm, respectively. The frequency of207

the input acoustic wave is fixed at 161 Hz, and the tapered tube is positioned in the vicinity208

of the velocity antinode.209

In Fig, 8(a), the evaluated K is depicted as a function of θ. The condition θ = 90◦
210

refers to an abrupt area change, whereas θ = 0◦ indicates a straight tube. Note that in this211

evaluation, the effect of the dissipation due to the length of the tapered tube is included212

in K; hence, K will become infinity when θ = 0◦. However, when θ = 8◦, the length of213

the tapered tube is 56 mm and the effect of the dissipation due to the length is negligible214

in the conducted experiments. As observed in Fig. 8(a), when θ > 15◦, the minor loss215

coefficient K reduces with the decrease in θ, and the value of K at θ = 30◦ becomes less216

than half of that without the tapered tube. Note that the lengths of the tapered tube at217

θ = 60◦ and 30◦ are 4.6 mm and 14 mm, respectively, and are comparable to the radii of218

the tubes. Furthermore, the value of K at θ = 15◦ is almost equal to that of a straight tube219

within the error margin. Therefore, we can conclude that the use of a tapered tube is an220
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FIG. 8. The taper angle dependence of the (a) minor loss coefficient and (b) normalized coefficient

b = K/Kθ=π/2.

effective method for reducing the acoustic minor loss, and that a tapered tube with a length221

comparable to the tube radius can reduce the acoustic minor loss by half.222

To obtain the approximation of the effect of the taper angle, we introduce the normalized223

coefficient b = K/Kθ=π/2 and plot it in Fig. 8(b). As observed in this figure, when π/2 >224

θ > π/12, b is almost a linear function of θ and can be approximately expressed as225

b(θ) = 0.69× θ − 0.09. (21)
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Therefore, we propose an empirical equation to estimate the acoustic minor loss for coupling226

Eq. (20) and Eq. (21) as follows:227

K = b(θ)×

(
1

2

(
1− Ai

Aj

)2

+
1

4

(
1− Ai

Aj

)0.75
)

(22)

( Ai < Aj, π/12 < θ < π/2).

V. VALIDATION OF THE OBTAINED EMPIRICAL K228

In order to validate Eq. (22), we perform an experiment using pressurized helium as229

a working fluid. The experimental setup is composed of a power source (thermoacoustic230

engine), resonator, and tank, as shown in Fig. 9. The setup is filled with helium at a time-231

averaged pressure of 0.8 MPa or 1.1 MPa. The inner radii the neck tube and the tank are232

49 mm and 195 mm, respectively, (Fig. 9); hence, ratio Ai/Aj = 0.063. The taper angle θ233

is estimated using CAD data and is 33◦. Note that because welding is used to connect the234

neck tube to the tapered tube, the connecting point is not sharp. Substituting these values235

in Eqs. (21) and (22), we obtain K = 0.21.236

Pressure sensors are mounted on the wall of the resonator and the acoustic power flowing237

to the tank is measured when the velocity amplitude is varied. All this acoustic power is238

dissipated in the tank mainly at the point where the cross-section changes. The power source239

generates an acoustic wave of 59±1 Hz, and the velocity antinode is found to be located240

near the tank inlet.241

The measured acoustic power with 0.8 MPa helium and that with 1.1 MPa helium,242

respectively, are depicted by unfilled and filled squares in Fig. 10 as a function of the cubic243

of the velocity amplitude, respectively. The dissipated power is approximately proportional244
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FIG. 9. Schematic illustration of the experimental setup for validation.

to the cubic of |U | and the time averaged pressure, as expected based on Eq. (1). Using245

K = 0.21 and Eq. (1), we estimate the minor loss, and display it in Fig 10 using solid246

and dotted lines. In this figure, the estimated loss is in good agreement with the measured247

power. Therefore, we conclude that Eq. (22) can be used for estimating the acoustic minor248

loss.249

VI. CONCLUSION250

In this study, the minor loss that occurs at abrupt changes in the tube cross-section251

was measured, and the minor loss coefficient K was experimentally determined. It was252

established that K is independent of the frequency and acoustic impedance, and that the253

dependence of K on the cross-sectional area ratio can be expressed by an equation based254

on the minor loss coefficient for unidirectional flow. Furthermore, the reduction effect of a255
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FIG. 10. Measured acoustic power and estimated minor loss.

tapered tube on K was investigated. When the taper angle θ = 15◦, K was reduced to 10%256

of that without the tapered tube. An empirical model was proposed based on the obtained257

data, in addition. The proposed model was validated using a system filled with pressurized258

helium; the estimated and experimental data were in good agreement.259
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