Drive Recorder Database for Accident/Incident Study and Its Potential for Active Safety Development

Pongsathorn Raksincharoensak

Smart Mobility Research Center, Tokyo University of Agriculture and Technology

Recording device : Image-captured drive recorder

Trigger Level for Data Recording and Recording Time

Condition for the trigger

- Combined acceleration exceeds 0.45G (or manual rec. SW).
- Recording time : 10 seconds before the trigger and 5 seconds after the trigger.
- Consequences of accident/incident can be observed by video together with the vehicle dynamics data.

Field Area for Data Collection

Description of Driving Database System

Conventional approach of road accident analysis

National Police Agency

ITARDA * macro statistics and micro data

Data is recorded based on interview. No precise information about crashes.

Drive recorder data analysis

Logged driving data (by direct measurement)

- Vehicle speed
- Driving maneuvers (brake, turn indicator)
- Location
- Relative distances with surroundings
- Surrounding environments
- Headway distance
- Driver behavior
- Passenger behavior

2-camera type

Database construction

- To obtain definite consequences of crash-relevant-events.
- Data can be retrieved from classification categories and statistical analysis can be done easily.

Breakdown of incident data classified by level of criticalness

The cause factors of accidents can be observed from in-room camera images.

2-camera data collection and analysis will be extensively conducted.

Items for Classifications

TAT

Graphic User Interface (GUI) for Database Handling

Breakdown of the accident/incident data (as of Sep.2013)

2011/4

Near-miss incident DB for accident reconstruction modeling

- Hazard anticipation driver modeling based on real-world driving situations.
- Systematic accident reconstruction model by identifying the environment parameters from real world data.
- Implementation and functional testing of the autonomous driving intelligence systems on DS.
- HMI investigation for seamless override.

Accident reconstruction modeling

Driving Simulator for Effectiveness estimation in man-machine system

Relevant Partners in Accident/Incident Data Analysis

(1)Accident/Incident Study:

Tokyo Univ. of Agri. & Tech., U. of Tokyo, Ibaraki Univ., Akita Pref.Univ., NTSEL, Jiken Center

11

②Active Safety Device Development and Assessment: 11 Automotive Manufacturers, and 7 Automotive Suppliers.

Data Sharing Activities in Japan

1 [2-Camera Drive Recorder Research Group]

- Promoting traffic safety research by making use of 2-camera drive recorder data
- Fulfillment of 2-camera drive recorder database content
- Sharing Information relevant to drive recorder and road-accident study
- July 2012 started. (2 universities and 7 automotive-related companies)
- Research group members pay for data maintenance and new data update.

② Former Recorder Utilization Research Group

- Current status of drive recorders and recent activities in data analysis, including information sharing about the perspectives of the vehicle safety technology and investigations on new approaches of active safety.
- Started in May 2011.

(5 universities, 9 government-related research institutes,

9 automotive-related companies, 2 insurance companies, 4 user groups)

Examples of information sharing by each research group

1. Automotive manufacturers

- Honda, Nissan etc.: Incident data classification by active safety countermeasures
- **Toyota CRDL**: Investigation of pedestrian motion modeling
- **Mitsubishi**: Effectiveness estimation of intersection collision prevention systems

2. Governments and National Research Institutes

- **MLIT**: Traffic safety countermeasures of residential road based on scientific analysis
- **Jiken Center** : Analysis on low-speed rear-end collision accidents
- **NTSEL**: Vehicle-to-pedestrian incident analysis

3. Universities

- **TUAT, Univ. of Tokyo :** Analysis on causal factors of rear-end collisions
- **TUAT, Ibaraki Univ.** : Driver behavior analysis in yellow traffic signal
- Akita Pref. Univ. : Active safety countermeasure effectiveness estimation

Future Roadmap of TUAT Drive Recorder Data Center

Driving education DVD

Sample of image data available on website of JSAE

Hazard anticipation training DVD on sale

さまざまなケースで、後車からの追突による事故が発生しています。 交通事故負傷者のうち、約半数が弾船の損傷で主に「ムチウチ」です。 万一のとき、身構えていればムチウチ」は防げます。停止時はバックミラーでの後方確認を心がけましょう。

●社内の交通安全教育に最適
●実際の映像で学習効果パッグン
●安全管理者必須アイテム

本教社編集の高級者や交流を設置の高級考測()・・ニン グ((V(T)を実施する線、それぞれの教育目的に沿ったセリノット専務を教 優リストッジ出い、認識的学教育を大な事を思いたしています。 本教社は、ドライカンニーダにより意識されたたな感染を用いているため、従 来のイラスト間に比べりアルな高度予加トレーニングが行え、高い指言効果 が除られるもの会議館しております。

Thank you for your attention.

Contact : pong@cc.tuat.ac.jp http://www.tuat.ac.jp/

TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY