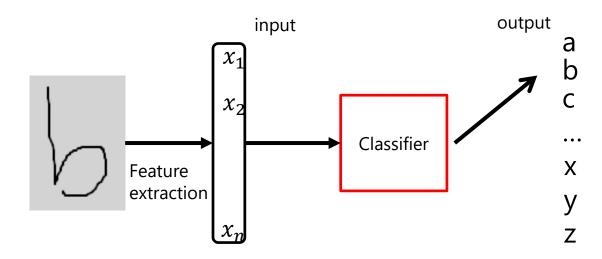
Introduction to Neural Networks

CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology

Pattern classification

- Which category of an input?
 - Example: Character recognition for input images
- Classifier
 - Output the category of an input



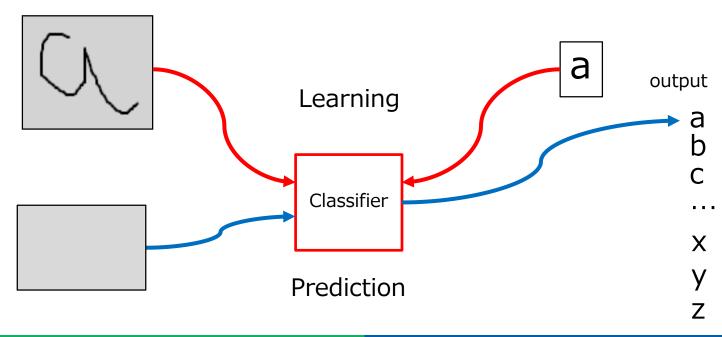
Supervised learning

- Learning by a training dataset: pair<input, target>
- Testing on unseen dataset
- → Generalization ability

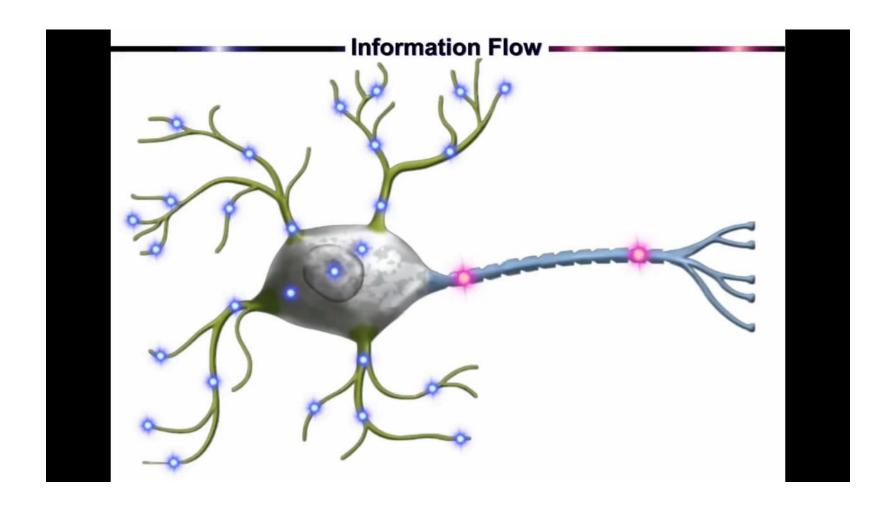
Training dataset Target Input

Supervised learning

- Learning by a training dataset: pair<input, target>
- Testing on unseen dataset
- → Generalization ability

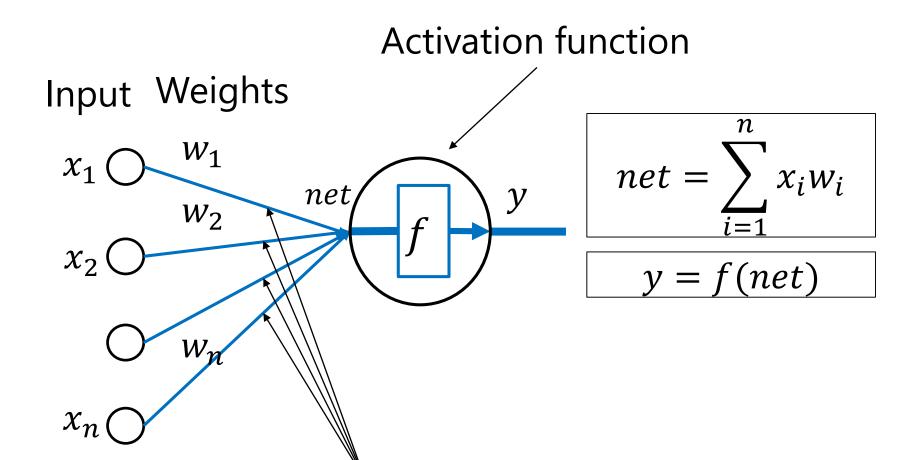


Human neuron



Neural Networks, A Simple Explanation

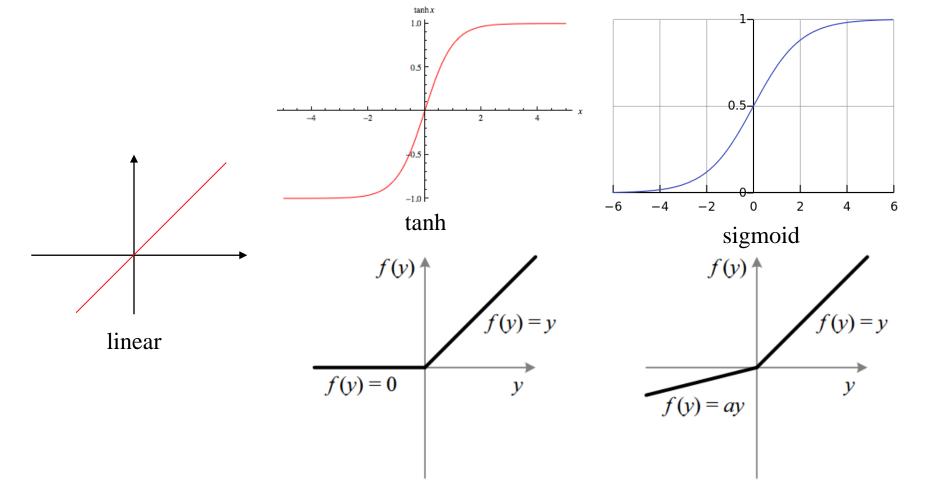
Artificial neuron



Weighted connections

Activation function

Controls when neuron should be activated

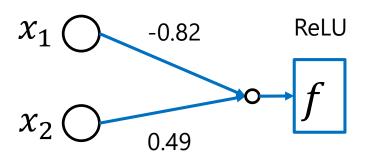


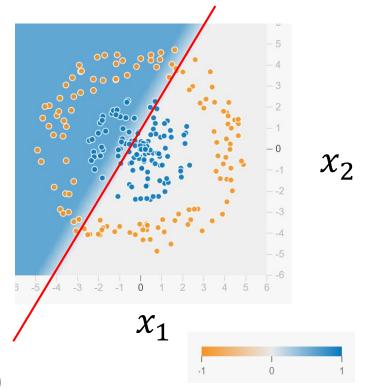
ReLU

Leaky ReLU

Weighted connection + Activation function

 A neuron is a <u>feature detector</u>: it is activated for a specific feature



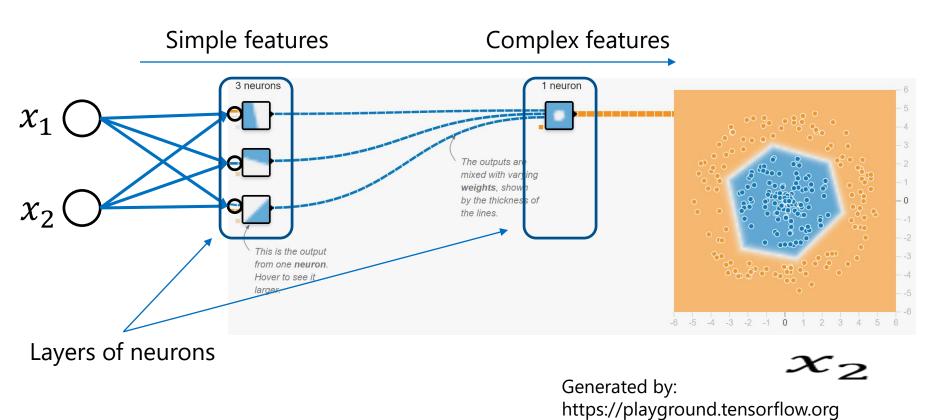


$$-0.82x_1 + 0.49x_2 = 0$$

Generated by: https://playground.tensorflow.org

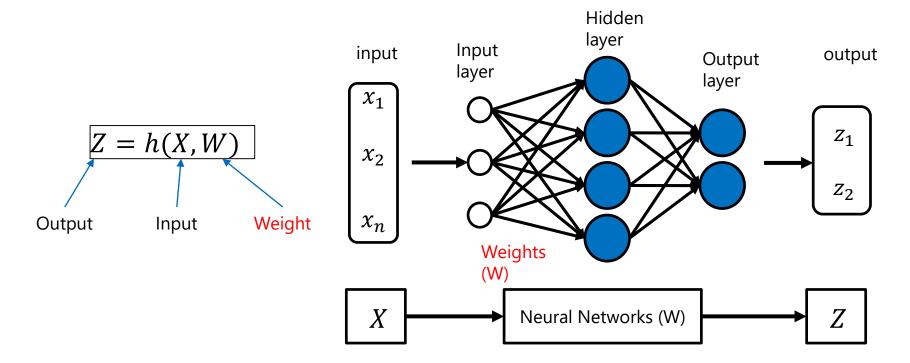
Multi-layer perceptron (MLP)

- Neurons are arrange into layers
 - Each neuron in a layer share the same input from preceding layer



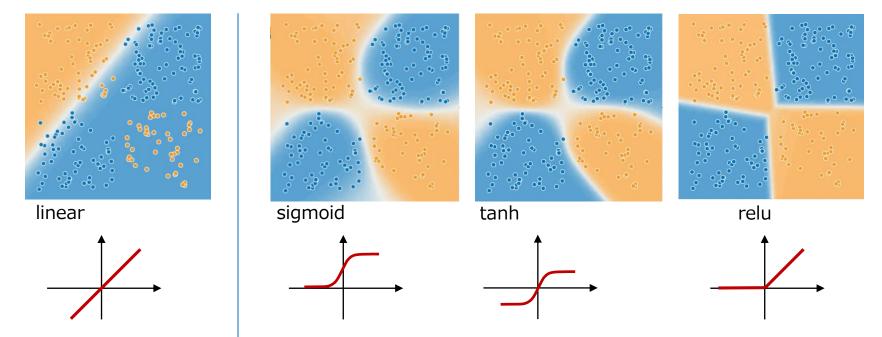
MLP as a learnable classifier

- Output corresponding to an input is constrained by weighted connection
 - These weights are <u>learnable</u> (adjustable)



Learning ability of neural networks

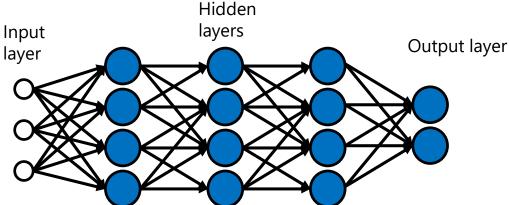
- Linear vs Non-linear
 - With linear activation function: can only learn linear function
 - With non-linear activation function: can learn nonlinear function



Learning ability of neural network

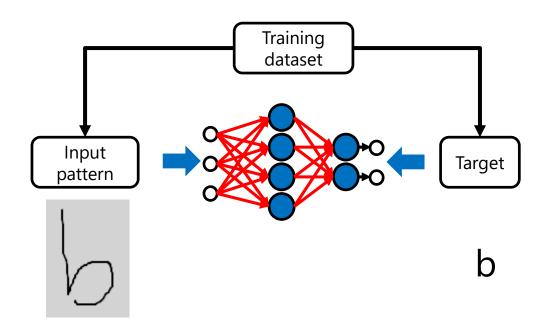
- Universal approximation theorem [Hornik, 1991]: MLP can learn arbitrary function with a single <u>hidden layer</u>
 - For complex functions, however, may require large hidden layer
- Deep neural network

 Contains many hidden layers, can extract complex features



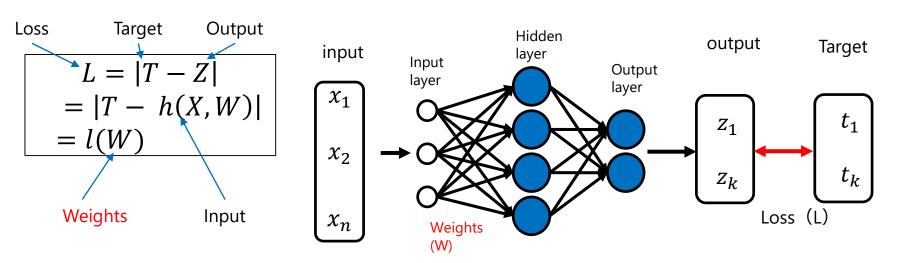
Learning in Neural Networks

- Weighted connection is tuned using the training data <input, target>
 - Objective: Networks could output correct targets corresponding to inputs



Learning in Neural Networks

- Loss function (objective function)
 - Difference between output and target
- Learning: optimization process
 - Minimize the loss (make output match target)



Learning in Neural Networks

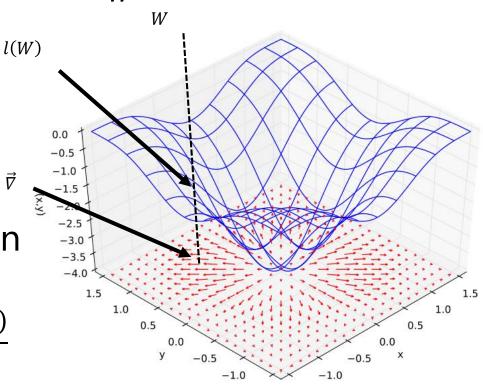
• Gradient vector of l for $W: \nabla_W l$

$$\nabla_W l = \frac{\partial l(W)}{\partial W}$$

 Weight update Reverse gradient direction

$$W_{update} = W_{current} - \eta \frac{\partial l(W)}{\partial W}$$

 η :learning rate

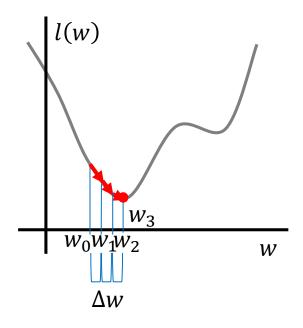


Loss function

- Logistic regression
- Probabilistic loss function
 - Binary entropy
 - Cross entropy
- Multimodal
- Mean square error

Learning & converge

By update weight using gradient, loss is reduced and converge to minima

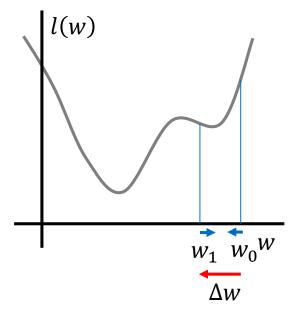


Learning through all training samples

- After updating weights, new training samples is fed to the networks to continue learning
- When all training samples is learnt, networks has completed one epoch. Networks must run through many epochs to converge.
- Weight update strategy
 - Stochastic gradient descent (SGD)
 - Batch update
 - Mini-batch

Momentum Optimizer

- Learning may stuck on a local minima.
- Momentum: Δw retains the latest optimizing direction. It may help the optimizer overcome the local minima.



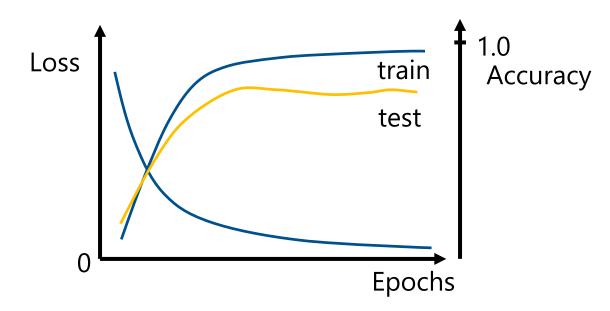
$$W_{update} = W_{current} - \eta \frac{\partial l(W)}{\partial W} + \alpha \Delta w$$

 η : learning rate

 α : momentum parameter

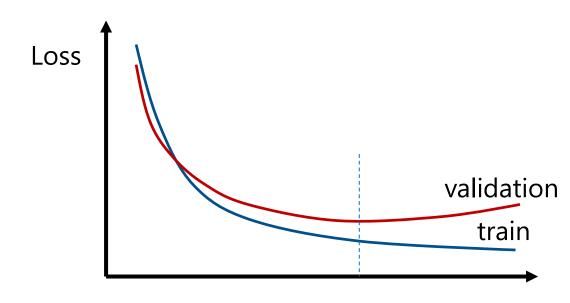
Overfitting & Generalization

- While training, model complexity increases through each epoch
 - Overfitting:
 - Model is over-complex
 - <u>Poor generalization</u>: good performance on train set but poor on test set



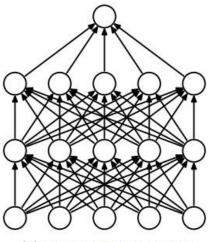
Prevent overfitting: Regularization

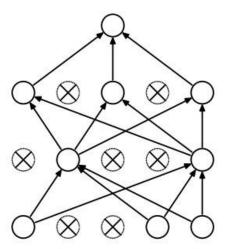
- Weight decaying
- Weight noise
- Early stopping
 - Evaluate performance on a validation set
 - Stop while there is <u>no improvement</u> on validation set



Prevent overfitting: Regularization

- Dropout
 - Randomly drop the neurons with a predefined probability
 - Good regularization: large ensembles of networks
 - Bayesian perspective





(b) After applying dropout.

Adaptive learning rate

Adam optimizer

Practice

- GPU implementation
 - Keras + Tensorflow

