Thank you for having an interest in my research.

My name is Sotaro Takiguchi.

ingacin.

I'm a graduated student at Tokyo University of Agriculture and Technology.

I strongly wanted to present my research and get your feedback in Utah, but

I cannot because of the recent situation. For making the most of virtual FNANO,

I prepared <u>a poster with audio file</u> using Google Cloud Text-to-Speech.

In my poster,

you can see audio files like below if you **open this PDF file by Adobe softwares.**

In order to play the audio, you **need to click this.**

You may be asked to download Adobe Flash Player to play the audio.

I would like to get your feedback.

This is the audio file of abstract of my research. Please try to play this.

Nanopore decoding for solution of the Hamiltonian path problem in DNA computing

O Sotaro Takiguchi, Nanami Takeuchi and Ryuji Kawano

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology

Introduction DNA computing has attracted attention as a tool for solving mathematical problems using molecules based on its massive parallelism. However, it is usually time-consuming to detect and decode the output information in the conventional system. We try to demonstrate rapid and label-free decoding of the output information in DNA-based parallel computation, a directed Hamiltonian path problem in this study, using nanopore technology.

Research Concept

Unzipping time

Base

Material & Method

Step 1: Amplify the random paths generated by DNA computation as single-stranded DNA by PCR and one-side PCR. **Step 2:** Separate the single-stranded random paths depending on its length by gel electrophoresis, and extract correct-length DNA encoding a route visiting all nodes only once, which is the correct answer.

Step 3: Each path strand hybridizes to the extracted DNA, and the duplex passes through an α -hemolysin (α HL), a poreforming protein, nanopore with the path strands unzipping. Analyze the unzipping time to decode the information.

Result & discussion

Rapid & label-free

decoding

Log (Unzipping time [ms])

