Existence of Kirillov-Reshetikhin crystals for the near adjoint nodes in exceptional types

Katsuyuki Naoi (joint work with Travis Scrimshaw)

Tokyo University of Agriculture and Technology

Representation Theory of Algebraic Groups and Quantum Groups

- in honor of Professor Ariki's 60th birthday -

October 21, 2019

Introduction

\mathfrak{g} : affine Lie algebra $/ \mathbb{Q}$ without a degree op. d, (e.g. $\mathfrak{g}=\mathfrak{g}_{0} \otimes \mathbb{Q}\left[t, t^{-1}\right] \oplus \mathbb{Q} K, \mathfrak{g}_{0}$: simple Lie alg.)
$I=\{0,1, \ldots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g},

Introduction

\mathfrak{g} : affine Lie algebra/ \mathbb{Q} without a degree op. d, (e.g. $\mathfrak{g}=\mathfrak{g}_{0} \otimes \mathbb{Q}\left[t, t^{-1}\right] \oplus \mathbb{Q} K, \mathfrak{g}_{0}$: simple Lie alg.)
$I=\{0,1, \ldots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g},
$U_{q}^{\prime}(\mathfrak{g})=\mathbb{Q}(q)\left\langle e_{i}, f_{i}, q^{h_{i}} \mid i \in I\right\rangle:$ quantum affine algebra (associative $\mathbb{Q}(q)$-alg. defined as a q-deformation of $U(\mathfrak{g})$)

Introduction

\mathfrak{g} : affine Lie algebra/ \mathbb{Q} without a degree op. d,
(e.g. $\mathfrak{g}=\mathfrak{g}_{0} \otimes \mathbb{Q}\left[t, t^{-1}\right] \oplus \mathbb{Q} K, \mathfrak{g}_{0}$: simple Lie alg.)
$I=\{0,1, \ldots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g},
$U_{q}^{\prime}(\mathfrak{g})=\mathbb{Q}(q)\left\langle e_{i}, f_{i}, q^{h_{i}} \mid i \in I\right\rangle:$ quantum affine algebra
(associative $\mathbb{Q}(q)$-alg. defined as a q-deformation of $U(\mathfrak{g})$)
Some of f.d. simple $U_{q}^{\prime}(\mathfrak{g})$-modules have crystal bases, but not all of them do!

Problem Classify f.d. simple $U_{q}^{\prime}(\mathfrak{g})$-modules having crystal bases.

Introduction

\mathfrak{g} : affine Lie algebra/ \mathbb{Q} without a degree op. d,
(e.g. $\mathfrak{g}=\mathfrak{g}_{0} \otimes \mathbb{Q}\left[t, t^{-1}\right] \oplus \mathbb{Q} K, \mathfrak{g}_{0}$: simple Lie alg.)
$I=\{0,1, \ldots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g},
$U_{q}^{\prime}(\mathfrak{g})=\mathbb{Q}(q)\left\langle e_{i}, f_{i}, q^{h_{i}} \mid i \in I\right\rangle:$ quantum affine algebra
(associative $\mathbb{Q}(q)$-alg. defined as a q-deformation of $U(\mathfrak{g})$)
Some of f.d. simple $U_{q}^{\prime}(\mathfrak{g})$-modules have crystal bases, but not all of them do!

Problem Classify f.d. simple $U_{q}^{\prime}(\mathfrak{g})$-modules having crystal bases.

Conjecture (Hatayama,Kuniba,Okado,Takgagi, Yamada/Tsuboi, 99-01)

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.
$\mathrm{KR} \bmod . W^{r, \ell}:$ a family of f.d. simple $U_{q}^{\prime}(\mathfrak{g})-\bmod \left(r \in I \backslash\{0\}, \ell \in \mathbb{Z}_{>0}\right)$

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.

Theorem

The conjecture holds for $W^{r, \ell}$ if
(1) $\ell=1 \quad$ [Kashiwara, 02]

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.

Theorem

The conjecture holds for $W^{r, \ell}$ if
(1) $\ell=1$ [Kashiwara, 02]
(2) \mathfrak{g} : nonexceptional type $\left(A_{n}^{(1,2)}, B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1,2)}\right)$ [Okado-Schilling, 08]

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.

Theorem

The conjecture holds for $W^{r, \ell}$ if
(1) $\ell=1 \quad[K a s h i w a r a, ~ 02]$
(2) \mathfrak{g} : nonexceptional type $\left(A_{n}^{(1,2)}, B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1,2)}\right)$ [Okado-Schilling, 08]
(3) \mathfrak{g} : type $G_{2}^{(1)}, D_{4}^{(3)}[\mathrm{N}, 18]$

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.

Theorem

The conjecture holds for $W^{r, \ell}$ if
(1) $\ell=1 \quad[K a s h i w a r a, ~ 02]$
(2) \mathfrak{g} : nonexceptional type $\left(A_{n}^{(1,2)}, B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1,2)}\right)$ [Okado-Schilling, 08]
(3) \mathfrak{g} : type $G_{2}^{(1)}, D_{4}^{(3)}[\mathrm{N}, 18]$
(4) $W^{r, \ell}$ is multiplicity free as a $U_{q}\left(\mathfrak{g}_{0}\right)$-module [Biswal-Scrimshaw, 19]

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.

Theorem

The conjecture holds for $W^{r, \ell}$ if
(1) $\ell=1$ [Kashiwara, 02]
(2) \mathfrak{g} : nonexceptional type $\left(A_{n}^{(1,2)}, B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1,2)}\right)$ [Okado-Schilling, 08]
(3) \mathfrak{g} : type $G_{2}^{(1)}, D_{4}^{(3)}[\mathrm{N}, 18]$
(4) $W^{r, \ell}$ is multiplicity free as a $U_{q}\left(\mathfrak{g}_{0}\right)$-module [Biswal-Scrimshaw, 19]
(5) r : near adjoint node in types $E_{6,7,8}^{(1)}, F_{4}^{(1)}, E_{6}^{(2)} \Leftarrow$ Today
${ }_{0}^{\circ}-\underset{\text { adjoint }}{\circ}-\underset{\text { near adjoint }}{\circ}$ in Dynkin diagram of \mathfrak{g}

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r, \ell}$ has a crystal base.

Theorem

The conjecture holds for $W^{r, \ell}$ if
(1) $\ell=1$ [Kashiwara, 02]
(2) \mathfrak{g} : nonexceptional type $\left(A_{n}^{(1,2)}, B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1,2)}\right)$ [Okado-Schilling, 08]
(3) \mathfrak{g} : type $G_{2}^{(1)}, D_{4}^{(3)}[\mathrm{N}, 18]$
(4) $W^{r, \ell}$ is multiplicity free as a $U_{q}\left(\mathfrak{g}_{0}\right)$-module [Biswal-Scrimshaw, 19]
(5) r : near adjoint node in types $E_{6,7,8}^{(1)}, F_{4}^{(1)}, E_{6}^{(2)} \Leftarrow$ Today
${ }_{0}^{\circ}-\underset{\text { adjoint }}{\circ}-\underset{\text { near adjoint }}{\circ}$ in Dynkin diagram of \mathfrak{g}
Except (1), a slightly weak version is proved (${ }^{\exists}$ a crystal pseudobase).

Summary: Status of the conjecture

exceptional types

Conj. has been proved for $W^{r, \ell}\left(\ell \in \mathbb{Z}_{>0}\right)$ with $r=\bullet($ previous results $)$

$$
E_{6}^{(1)}:
$$

$$
E_{7}^{(1)}:
$$

$$
F_{4}^{(1)}: \quad \stackrel{\bullet-}{0}-0 \Rightarrow 0-
$$

$$
E_{6}^{(2)}:
$$

$$
G_{2}^{(1)}: \quad \stackrel{\bullet}{0} \bullet \Rightarrow
$$

$$
D_{4}^{(3)}: \quad \stackrel{\bullet}{0} \bullet \bullet
$$

Summary: Status of the conjecture

exceptional types

Conj. has been proved for $W^{r, \ell}\left(\ell \in \mathbb{Z}_{>0}\right)$ with $r=\bullet$ (previous results) today: $r=\bullet$ (near adjoint node)

$$
E_{6}^{(1)}:
$$

$$
E_{7}^{(1)}:
$$

 $E_{6}^{(2)}:$

$D_{4}^{(3)}:$

Summary: Status of the conjecture

exceptional types

Conj. has been proved for $W^{r, \ell}\left(\ell \in \mathbb{Z}_{>0}\right)$ with $r=\bullet$ (previous results) today: $r=\bullet($ near adjoint node)

$$
E_{6}^{(1)}:
$$

$$
E_{7}^{(1)}:
$$

 $E_{6}^{(2)}:$

Rem. In all types, the local diagrams are the same:

(1) Basic notions

- Crystal bases and pseudobases
- KR modules
- Prepolarization
(2) Criterion for the existence of a crystal pseudobase
by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]
(3) Proof
(c) Future work
(1) Basic notions
- Crystal bases and pseudobases
- KR modules
- Prepolarization
(2) Criterion for the existence of a crystal pseudobase
by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]
(3) Proof
(c) Future work
(1) Basic notions
- Crystal bases and pseudobases
- KR modules
- Prepolarization
(2) Criterion for the existence of a crystal pseudobase
by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]
(3) Proof
(c) Future work
(1) Basic notions
- Crystal bases and pseudobases
- KR modules
- Prepolarization
(2) Criterion for the existence of a crystal pseudobase
by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]
(3) Proof
(9) Future work

crystal base and pseudobase

$\mathfrak{g}:$ affine Lie algebra with index set $I=\{0, \ldots, n\}$,
$U_{q}^{\prime}(\mathfrak{g})$: quantum affine algebra without degree operator q^{d}
(associative $\mathbb{Q}(q)$-algebra generated by $\left.e_{i}, f_{i}, q^{h_{i}}(i \in I)\right)$,

crystal base and pseudobase

$\mathfrak{g}:$ affine Lie algebra with index set $I=\{0, \ldots, n\}$,
$U_{q}^{\prime}(\mathfrak{g})$: quantum affine algebra without degree operator q^{d}
(associative $\mathbb{Q}(q)$-algebra generated by $e_{i}, f_{i}, q^{h_{i}}(i \in I)$),
M : integrable $U_{q}^{\prime}(\mathfrak{g})$-module,
$e_{i}, f_{i} \curvearrowright M(i \in I) \stackrel{\text { "twist" }}{\leadsto} \tilde{e}_{i}, \tilde{f}_{i} \curvearrowright M(i \in I):$ Kashiwara operators

Definition

(1) A pair (L, B) is called a crystal base if
(a) L : A-lattice of $M(A:=\{f / g \mid g(0) \neq 0\} \subseteq \mathbb{Q}(q)$: local subring $)$,
(b) $B \subseteq L / q L$: a \mathbb{Q}-basis,
(c) $L=\bigoplus_{\lambda} L_{\lambda}, B=\bigsqcup_{\lambda} B_{\lambda}$ (i.e. compatible with weight dec.),
(d) $\tilde{e}_{i} L, \tilde{f}_{i} L \subseteq L \quad\left(\Rightarrow \tilde{e}_{i}, \tilde{f}_{i} \curvearrowright L / q L\right)$,
(e) $\tilde{e}_{i} b, \tilde{f}_{i} b \in B \sqcup\{0\}$ for $b \in B$,
(f) $\tilde{e}_{i} b=b^{\prime} \Leftrightarrow b=\tilde{f}_{i} b^{\prime}$ for $b, b^{\prime} \in B$.

Definition

(1) A pair (L, B) is called a crystal base if
(a) L : A-lattice of $M(A:=\{f / g \mid g(0) \neq 0\} \subseteq \mathbb{Q}(q)$: local subring $)$,
(b) $B \subseteq L / q L$: a \mathbb{Q}-basis,
(c) $L=\bigoplus_{\lambda} L_{\lambda}, B=\bigsqcup_{\lambda} B_{\lambda}$ (i.e. compatible with weight dec.),
(d) $\tilde{e}_{i} L, \tilde{f}_{i} L \subseteq L \quad\left(\Rightarrow \tilde{e}_{i}, \tilde{f}_{i} \curvearrowright L / q L\right)$,
(e) $\tilde{e}_{i} b, \tilde{f}_{i} b \in B \sqcup\{0\}$ for $b \in B$,
(f) $\tilde{e}_{i} b=b^{\prime} \Leftrightarrow b=\tilde{f}_{i} b^{\prime}$ for $b, b^{\prime} \in B$.
(2) A pair (L, B) is called a crystal pseudobase if (a), (c)-(f) and (b^{\prime}) ${ }^{\exists} B^{\prime} \subseteq L / q L$: a \mathbb{Q}-basis s.t. $B=B^{\prime} \sqcup-B^{\prime}$.

Definition

(1) A pair (L, B) is called a crystal base if
(a) L : A-lattice of $M(A:=\{f / g \mid g(0) \neq 0\} \subseteq \mathbb{Q}(q)$: local subring $)$,
(b) $B \subseteq L / q L$: a \mathbb{Q}-basis,
(c) $L=\bigoplus_{\lambda} L_{\lambda}, B=\bigsqcup_{\lambda} B_{\lambda}$ (i.e. compatible with weight dec.),
(d) $\tilde{e}_{i} L, \tilde{f}_{i} L \subseteq L \quad\left(\Rightarrow \tilde{e}_{i}, \tilde{f}_{i} \curvearrowright L / q L\right)$,
(e) $\tilde{e}_{i} b, \tilde{f}_{i} b \in B \sqcup\{0\}$ for $b \in B$,
(f) $\tilde{e}_{i} b=b^{\prime} \Leftrightarrow b=\tilde{f}_{i} b^{\prime}$ for $b, b^{\prime} \in B$.
(2) A pair (L, B) is called a crystal pseudobase if (a), (c)-(f) and (b^{\prime}) ${ }^{\exists} B^{\prime} \subseteq L / q L$: a \mathbb{Q}-basis s.t. $B=B^{\prime} \sqcup-B^{\prime}$.

Rem. In the same way with crystal bases, from a crystal pseudobase we can construct a crystal graph (I-colored oriented graph)
\rightsquigarrow combinatorial formulas for tensor products, branching rules, etc.

Kirillov-Reshetikhin (KR) modules

$U_{q}^{\prime}(\mathfrak{g}) \supseteq U_{q}\left(\mathfrak{g}_{0}\right):=\mathbb{Q}(q)\left\langle e_{i}, f_{i}, q^{h_{i}} \mid i \in I_{0}:=I \backslash\{0\}\right\rangle$
P_{0} : weight lattice of $\mathfrak{g}_{0}, \quad P_{0}^{+}$: set of dominant integral weights of \mathfrak{g}_{0}, $\varpi_{i} \in P_{0}^{+}\left(i \in I_{0}\right)$: fundamental weight of $\mathfrak{g}_{0} \quad$ (i.e. $\left.\left\langle h_{i}, \varpi_{j}\right\rangle=\delta_{i j}\right)$

Kirillov-Reshetikhin (KR) modules

$U_{q}^{\prime}(\mathfrak{g}) \supseteq U_{q}\left(\mathfrak{g}_{0}\right):=\mathbb{Q}(q)\left\langle e_{i}, f_{i}, q^{h_{i}} \mid i \in I_{0}:=I \backslash\{0\}\right\rangle$
P_{0} : weight lattice of $\mathfrak{g}_{0}, \quad P_{0}^{+}$: set of dominant integral weights of \mathfrak{g}_{0}, $\varpi_{i} \in P_{0}^{+}\left(i \in I_{0}\right)$: fundamental weight of $\mathfrak{g}_{0} \quad$ (i.e. $\left.\left\langle h_{i}, \varpi_{j}\right\rangle=\delta_{i j}\right)$

Fact $\left\{\right.$ isom. classes of simple $U_{q}\left(\mathfrak{g}_{0}\right)$-modules $\} \stackrel{\text { 1:1 }}{\longleftrightarrow} P_{0}^{+}$

$$
V_{0}(\lambda)
$$

Ψ
λ
$W^{r}\left(r \in I_{0}\right)$: fundamental module defined by [Kashiwara, 02]
(f.d. simple $U_{q}^{\prime}(\mathfrak{g})$-module having a crystal base with highest weight ϖ_{r})
$W^{r}\left(r \in I_{0}\right)$: fundamental module defined by [Kashiwara, 02]
(f.d. simple $U_{q}^{\prime}(\mathfrak{g})$-module having a crystal base with highest weight ϖ_{r})

For $r \in I_{0}$ and $k \in \mathbb{Z}$, define a $U_{q}^{\prime}(\mathfrak{g})$-module $W_{q^{k}}^{r}$ as follows:
$W_{q^{k}}^{r}=W^{r}$ as vector sp., and denoting by ρ the new action, we have
$\rho\left(e_{i}\right) v=q^{\delta_{0 i} k} e_{i} v, \quad \rho\left(f_{i}\right) v=q^{-\delta_{0 i} k} f_{i} v, \quad \rho\left(q^{h_{i}}\right) v=q^{h_{i}} v$.
$W^{r}\left(r \in I_{0}\right)$: fundamental module defined by [Kashiwara, 02]
(f.d. simple $U_{q}^{\prime}(\mathfrak{g})$-module having a crystal base with highest weight ϖ_{r})

For $r \in I_{0}$ and $k \in \mathbb{Z}$, define a $U_{q}^{\prime}(\mathfrak{g})$-module $W_{q^{k}}^{r}$ as follows:
$W_{q^{k}}^{r}=W^{r}$ as vector sp., and denoting by ρ the new action, we have
$\rho\left(e_{i}\right) v=q^{\delta_{0 i} k} e_{i} v, \quad \rho\left(f_{i}\right) v=q^{-\delta_{0 i} k} f_{i} v, \quad \rho\left(q^{h_{i}}\right) v=q^{h_{i}} v$.
For $r \in I_{0}$ and $\ell \in \mathbb{Z}_{>0}$, consider a nontrivial $U_{q}^{\prime}(\mathfrak{g})$-module hom.
$W_{q^{\ell-1}}^{r}$
$\otimes W_{q^{-\ell+1}}^{r} \xrightarrow{R} W_{q^{-\ell+1}}^{r}$
\otimes
..
$\otimes W_{q^{\ell-3}}^{r} \otimes W_{q^{\ell-1}}^{r}$.

Definition

$W^{r, \ell}:=\operatorname{Im} R$: Kirillov-Reshetikhin (KR) modules
Note $W^{r, 1}=W^{r}$.

Main Theorem

Theorem (N-Scrimshaw)

If \mathfrak{g} is either of type $E_{6,7,8}^{(1)}, F_{4}^{(1)}$ or $E_{6}^{(2)}$ and r is near adjoint, then the KR module $W^{r, \ell}$ has a crystal pseudobase for every ℓ.

Main Theorem

Theorem (N-Scrimshaw)

If \mathfrak{g} is either of type $E_{6,7,8}^{(1)}, F_{4}^{(1)}$ or $E_{6}^{(2)}$ and r is near adjoint, then the KR module $W^{r, \ell}$ has a crystal pseudobase for every ℓ.

In the proof, we use a criterion introduced by [KKMMNN]: $\left({ }^{\exists}\right.$ crystal pseudobase $) \Leftarrow$ statements on a prepolarization (,)

prepolarization

Define an anti-involution Ψ of $U_{q}^{\prime}(\mathfrak{g})$ by
$\Psi\left(e_{i}\right)=q_{i}^{-1} q_{i}^{-h_{i}} f_{i}, \quad \Psi\left(f_{i}\right)=q_{i}^{-1} q_{i}^{h_{i}} e_{i}, \quad \Psi\left(q^{h_{i}}\right)=q^{h_{i}}$,
where $q_{i}=q^{c_{i}}$ with a certain positive integer c_{i}.

Definition

Let M be a $U_{q}^{\prime}(\mathfrak{g})$-module, and $($,$) a \mathbb{Q}(q)$-bilinear form on M.
We say (,) is a prepolarization on M if it is symmetric and satisfies $(x u, v)=(u, \Psi(x) v)$ for $x \in U_{q}^{\prime}(\mathfrak{g})$ and $u, v \in M$.

In this talk, we often use the notation $\|u\|^{2}=(u, u)$.

Proposition

$W^{r, \ell}$ has a prepolarization (,).

Construction of this prepolarization

Recall $W^{r, \ell}:=\operatorname{Im} R$, where

$$
W_{q^{\ell-1}}^{r} \otimes \cdots \otimes W_{q^{-\ell+1}}^{r} \xrightarrow{R} W_{q^{-\ell+1}}^{r} \otimes \cdots \otimes W_{q^{\ell-1}}^{r}
$$

Proposition

$W^{r, \ell}$ has a prepolarization (,).

Construction of this prepolarization

Recall $W^{r, \ell}:=\operatorname{Im} R$, where

$$
W_{q^{\ell-1}}^{r} \otimes \cdots \otimes W_{q^{-\ell+1}}^{r} \xrightarrow{R} W_{q^{-\ell+1}}^{r} \otimes \cdots \otimes W_{q^{\ell-1}}^{r}
$$

Fact W^{r} has a prepolarization (,).

Proposition

$W^{r, \ell}$ has a prepolarization (,).

Construction of this prepolarization

Recall $W^{r, \ell}:=\operatorname{Im} R$, where
$W_{q^{\ell-1}}^{r} \otimes \cdots \otimes W_{q^{-\ell+1}}^{r} \xrightarrow{R} W_{q^{-\ell+1}}^{r} \otimes \cdots \otimes W_{q^{\ell-1}}^{r}$
Fact W^{r} has a prepolarization (,).
\rightsquigarrow natural pairing $($,$) between W_{q^{k}}^{r}$ and $W_{q^{-k}}^{r}$ for any $k \in \mathbb{Z}$.
$\rightsquigarrow\left(u_{1} \otimes \cdots \otimes u_{\ell}, v_{1} \otimes \cdots \otimes v_{\ell}\right)^{\prime}=\left(u_{1}, v_{1}\right) \cdots\left(u_{\ell}, v_{\ell}\right)$ defines a pairing between $W_{q^{\ell-1}}^{r} \otimes \cdots \otimes W_{q^{-\ell+1}}^{r}$ and $W_{q^{-\ell+1}}^{r} \otimes \cdots \otimes W_{q^{\ell-1}}^{r}$.

Proposition

$W^{r, \ell}$ has a prepolarization (,).

Construction of this prepolarization

Recall $W^{r, \ell}:=\operatorname{Im} R$, where
$W_{q^{\ell-1}}^{r} \otimes \cdots \otimes W_{q^{-\ell+1}}^{r} \xrightarrow{R} W_{q^{-\ell+1}}^{r} \otimes \cdots \otimes W_{q^{\ell-1}}^{r}$
Fact W^{r} has a prepolarization (,).
\rightsquigarrow natural pairing $($,$) between W_{q^{k}}^{r}$ and $W_{q^{-k}}^{r}$ for any $k \in \mathbb{Z}$.
$\rightsquigarrow\left(u_{1} \otimes \cdots \otimes u_{\ell}, v_{1} \otimes \cdots \otimes v_{\ell}\right)^{\prime}=\left(u_{1}, v_{1}\right) \cdots\left(u_{\ell}, v_{\ell}\right)$ defines a pairing between $W_{q^{\ell-1}}^{r} \otimes \cdots \otimes W_{q^{-\ell+1}}^{r}$ and $W_{q^{-\ell+1}}^{r} \otimes \cdots \otimes W_{q^{\ell-1}}^{r}$.

Then $(R(u), R(v)):=(u, R(v))^{\prime}$ for $u, v \in W_{q^{\ell-1}}^{r} \otimes \cdots \otimes W_{q^{-\ell+1}}^{r}$

Criterion for the existence of crystal pseudobase

Theorem (KKMMNN)

Let M be a f.d. $U_{q}^{\prime}(\mathfrak{g})$-module, and assume that
(1) M has a prepolarization (,),
(2) ${ }^{\exists}$ "suitable \mathbb{Z}-form" $M_{\mathbb{Z}}$ in M,
(3) there exists a set of vectors $S=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq M_{\mathbb{Z}}$ s.t.
(i) $M \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{k=1}^{m} V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$,
(ii) $\left(u_{k}, u_{j}\right) \in \delta_{k j}+q A \quad\left({ }^{\forall} k, j\right) \quad$ (almost orthonomality)
(iii) $\left\|e_{i} u_{k}\right\|^{2} \in q_{i}^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A\left({ }^{\forall} i \in I_{0},{ }^{\forall} k\right)$.

Then, setting
$L:=\left\{u \in M \mid\|u\|^{2} \in A\right\}, B:=\left\{b \in\left(M_{\mathbb{Z}} \cap L\right) /\left(M_{\mathbb{Z}} \cap q L\right) \mid\|b\|^{2}=1\right\}$, (L, B) is a crystal pseudobase of M.

Criterion for the existence of crystal pseudobase

Theorem (KKMMNN)

Let M be a f.d. $U_{q}^{\prime}(\mathfrak{g})$-module, and assume that
(1) M has a prepolarization (,),
(2) ${ }^{\exists}$ "suitable \mathbb{Z}-form" $M_{\mathbb{Z}}$ in M,
(3) there exists a set of vectors $S=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq M_{\mathbb{Z}}$ s.t.
(i) $M \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{k=1}^{m} V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$,
(ii) $\left(u_{k}, u_{j}\right) \in \delta_{k j}+q A \quad\left({ }^{\forall} k, j\right) \quad$ (almost orthonomality)
(iii) $\left\|e_{i} u_{k}\right\|^{2} \in q_{i}^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A \quad\left({ }^{\forall} i \in I_{0},{ }^{\forall} k\right)$.

Then, setting
$L:=\left\{u \in M \mid\|u\|^{2} \in A\right\}, B:=\left\{b \in\left(M_{\mathbb{Z}} \cap L\right) /\left(M_{\mathbb{Z}} \cap q L\right) \mid\|b\|^{2}=1\right\}$, (L, B) is a crystal pseudobase of M.

Note (ii) $\Rightarrow b_{k}:=\overline{u_{k}} \in B, \quad$ (iii) $\Rightarrow \tilde{e}_{i} b_{k}=0\left(i \in I_{0}\right)$.
So (i)-(iii) imply that there exist enough $U_{q}\left(\mathfrak{g}_{0}\right)$-h.w. elements in B.

what we need to do in KR module case

(1) M has a prepolarization (,),
(2) ${ }^{\exists}$ "suitable \mathbb{Z}-form" $M_{\mathbb{Z}}$ in M,
(3) there exists a set of vectors $S=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq M_{\mathbb{Z}}$ s.t.
(i) $M \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{k=1}^{m} V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$,
(ii) $\left(u_{k}, u_{j}\right) \in \delta_{k j}+q A \quad\left({ }^{\forall} k, j\right) \quad$ (almost orthonomality)
(iii) $\left\|e_{i} u_{k}\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A \quad\left({ }^{\forall} i \in I_{0},{ }^{\forall} k\right)$.
(1) and (2) are known to hold for all the KR modules $W^{r, \ell}$.

what we need to do in KR module case

(1) M has a prepolarization (,),
(2) ${ }^{\exists}$ "suitable \mathbb{Z}-form" $M_{\mathbb{Z}}$ in M,
(3) there exists a set of vectors $S=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq M_{\mathbb{Z}}$ s.t.
(i) $M \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{k=1}^{m} V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$,
(ii) $\left(u_{k}, u_{j}\right) \in \delta_{k j}+q A \quad\left({ }^{\forall} k, j\right) \quad$ (almost orthonomality)
(iii) $\left\|e_{i} u_{k}\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A \quad\left({ }^{\forall} i \in I_{0},{ }^{\forall} k\right)$.
(1) and (2) are known to hold for all the KR modules $W^{r, \ell}$.

Hence what we have to do is the following:
(a) Find a suitable set $S_{\ell}=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq W^{r, \ell}$,
(b) Check that these vectors satisfy (i), (ii) and (iii).

Proof of the main theorem

Theorem (N-Scrimshaw)

If \mathfrak{g} is either of type $E_{6,7,8}^{(1)}, F_{4}^{(1)}$ or $E_{6}^{(2)}$ and r is near adjoint, then the KR module $W^{r, \ell}$ has a crystal pseudobase for every ℓ.

Proof of the main theorem

Theorem (N-Scrimshaw)

If \mathfrak{g} is either of type $E_{6,7,8}^{(1)}, F_{4}^{(1)}$ or $E_{6}^{(2)}$ and r is near adjoint, then the KR module $W^{r, \ell}$ has a crystal pseudobase for every ℓ.

In the sequel, assume that \mathfrak{g} is either of type $E_{6,7,8}^{(1)}, F_{4}^{(1)}$ or $E_{6}^{(2)}$, and the nodes are labelled as

(i.e., 2: near adjoint node)

We have to
(a) Find a suitable set $S_{\ell}=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq W^{2, \ell}$,
(b) Check that these vectors satisfy (i) $W^{2, \ell} \cong \bigoplus V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$, (ii) $\left(u_{k}, u_{j}\right) \in \delta_{k j}+q A$ and (iii) $\left\|e_{i} u_{k}\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A$.

Construction of the set of vectors S_{ℓ} in the criterion

Notation $\quad[m]=\left(q^{m}-q^{-m}\right) /\left(q-q^{-1}\right), \quad[m]!=[m] \cdots[1]$, Set $e_{i}^{(m)}=e_{i}^{m} /[m]$! for $i \in I \quad$ (q-devided power), $w_{\ell} \in W_{\ell \omega_{2}}^{2, \ell}:$ a highest weight vector s.t. $\left\|w_{\ell}\right\|^{2}=1$,
For a seq. $i_{1}, i_{2}, \ldots, i_{p}$ of elements of $I, e_{i_{1}, i_{2}, \ldots, i_{p}}^{(m)}:=e_{i_{1}}^{(m)} e_{i_{2}}^{(m)} \cdots e_{i_{p}}^{(m)}$.

Construction of the set of vectors S_{ℓ} in the criterion

Notation $\quad[m]=\left(q^{m}-q^{-m}\right) /\left(q-q^{-1}\right), \quad[m]!=[m] \cdots[1]$,
Set $e_{i}^{(m)}=e_{i}^{m} /[m]$! for $i \in I \quad(q$-devided power),
$w_{\ell} \in W_{\ell w_{2}}^{2, \ell}:$ a highest weight vector s.t. $\left\|w_{\ell}\right\|^{2}=1$,
For a seq. $i_{1}, i_{2}, \ldots, i_{p}$ of elements of $I, e_{i_{1}, i_{2}, \ldots, i_{p}}^{(m)}:=e_{i_{1}}^{(m)} e_{i_{2}}^{(m)} \cdots e_{i_{p}}^{(m)}$.
For $\boldsymbol{a}=\left(a_{1}, \ldots, a_{6}\right) \in \mathbb{Z}_{\geq 0}^{6}, e^{\boldsymbol{a}}:=e_{0}^{\left(a_{6}\right)} e_{1}^{\left(a_{5}\right)} e_{2}^{\left(a_{4}\right)} E_{\beta}^{\left(a_{3}\right)} E_{\alpha}^{\left(a_{2}\right)} e_{1,0}^{\left(a_{1}\right)}$, where $E_{\alpha}^{(a)}, E_{\beta}^{(a)}$ are some prod. of $e_{i}^{(a)}$'s \Leftarrow defined in the next slide

Definition

For $\ell \in \mathbb{Z}_{>0}$, define a subset $S_{\ell} \subseteq W^{2, \ell}$ by
$S_{\ell}:=\left\{e^{\boldsymbol{a}} w_{\ell} \mid a_{6} \leq a_{5} \leq a_{4} \leq a_{3} \leq a_{2}, a_{2}+a_{3}+a_{4}-a_{5} \leq a_{1} \leq a_{4}+\ell\right\}$.

Assume that \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$.
α : the highest root of $I \backslash\{0,1\}$,

Assume that \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$.
α : the highest root of $I \backslash\{0,1\}, \quad \beta$: the highest root of

Assume that \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$.
α : the highest root of $I \backslash\{0,1\}$,

Set $E_{\alpha}^{(a)}:=e_{i_{1}, \ldots, i_{r}, 2}^{(a)}, \quad E_{\beta}^{(a)}:=e_{j_{1}, \ldots, j_{s}, 2}^{(a)}$ for $m \in \mathbb{Z}_{\geq 0}$, where i_{1}, \ldots, i_{r} : a (nonredundant) seq. of el. of I s.t. $s_{i_{1}} \cdots s_{i_{r}}\left(\alpha_{2}\right)=\alpha$, j_{1}, \ldots, j_{s} : a (nonredundant) seq. of el. of I s.t. $s_{j_{1}} \cdots s_{j_{s}}\left(\alpha_{2}\right)=\beta$,

Assume that \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$.
α : the highest root of $I \backslash\{0,1\}$,

Set $E_{\alpha}^{(a)}:=e_{i_{1}, \ldots, i_{r}, 2}^{(a)}, \quad E_{\beta}^{(a)}:=e_{j_{1}, \ldots, j_{s}, 2}^{(a)}$ for $m \in \mathbb{Z}_{\geq 0}$, where i_{1}, \ldots, i_{r} : a (nonredundant) seq. of el. of I s.t. $s_{i_{1}} \cdots s_{i_{r}}\left(\alpha_{2}\right)=\alpha$, j_{1}, \ldots, j_{s} : a (nonredundant) seq. of el. of I s.t. $s_{j_{1}} \cdots s_{j_{s}}\left(\alpha_{2}\right)=\beta$,

Ex. $\left(\mathfrak{g}=E_{6}^{(1)}\right)$
$\alpha=\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}=s_{6} s_{5} s_{4} s_{3}\left(\alpha_{2}\right) \Rightarrow E_{\alpha}^{(m)}=e_{6,5,4,3,2}^{(m)}$,
$\beta=\alpha_{2}+\alpha_{3}+\alpha_{4}=s_{4} s_{3}\left(\alpha_{2}\right)$

$$
\Rightarrow E_{\beta}^{(m)}=e_{4,3,2}^{(m)}
$$

Assume that \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$.
α : the highest root of $I \backslash\{0,1\}$,

Set $E_{\alpha}^{(a)}:=e_{i_{1}, \ldots, i_{r}, 2}^{(a)}, \quad E_{\beta}^{(a)}:=e_{j_{1}, \ldots, j_{s}, 2}^{(a)}$ for $m \in \mathbb{Z}_{\geq 0}$, where i_{1}, \ldots, i_{r} : a (nonredundant) seq. of el. of I s.t. $s_{i_{1}} \cdots s_{i_{r}}\left(\alpha_{2}\right)=\alpha$, j_{1}, \ldots, j_{s} : a (nonredundant) seq. of el. of I s.t. $s_{j_{1}} \cdots s_{j_{s}}\left(\alpha_{2}\right)=\beta$,

Ex. $\left(\mathfrak{g}=E_{6}^{(1)}\right)$
$\alpha=\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}=s_{6} s_{5} s_{4} s_{3}\left(\alpha_{2}\right) \Rightarrow E_{\alpha}^{(m)}=e_{6,5,4,3,2}^{(m)}$,
$\beta=\alpha_{2}+\alpha_{3}+\alpha_{4}=s_{4} s_{3}\left(\alpha_{2}\right)$ $\Rightarrow E_{\beta}^{(m)}=e_{4,3,2}^{(m)}$

In types $F_{4}^{(1)}, E_{6}^{(2)}$, one defines $E_{\alpha}^{(m)}, E_{\beta}^{(m)}$ in a slmilar way.

How to find the set $S_{\ell}=\left\{e^{a} w_{\ell} \mid \cdots\right\} \subseteq W^{2, \ell}$?

${ }^{\exists}$ combin. formula for dec. $W^{r, \ell} \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{\lambda} V_{0}(\lambda)$ (fermionic formula)

How to find the set $S_{\ell}=\left\{e^{a} w_{\ell} \mid \cdots\right\} \subseteq W^{2, \ell}$?

${ }^{\exists}$ combin. formula for dec. $W^{r, \ell} \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{\lambda} V_{0}(\lambda)$ (fermionic formula)
\rightsquigarrow In near adjoint cases, more explicit formulas are obtained from this.
\therefore Since $W^{2, \ell} \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{k} V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$ must hold, the weights of the vectors $\left\{u_{k}\right\} \subseteq W^{2, \ell}$ in the criterion are previously known.

How to find the set $S_{\ell}=\left\{e^{a} w_{\ell} \mid \cdots\right\} \subseteq W^{2, \ell}$?

${ }^{\exists}$ combin. formula for dec. $W^{r, \ell} \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{\lambda} V_{0}(\lambda)$ (fermionic formula)
\rightsquigarrow In near adjoint cases, more explicit formulas are obtained from this.
\therefore Since $W^{2, \ell} \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{k} V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$ must hold, the weights of the vectors $\left\{u_{k}\right\} \subseteq W^{2, \ell}$ in the criterion are previously known.

Observation In previous works (e.g., [Okado-Schilling]): vectors $\left\{u_{k}\right\}$ are written in the forms $e_{i_{1}}^{\left(a_{1}\right)} \cdots e_{i_{p}}^{\left(a_{p}\right)} w_{\ell}\left(a_{1}, \ldots, a_{p} \in \mathbb{Z}_{\geq 0}\right)$. Here $s_{i_{1}} \cdots s_{i_{p}}$: red. exp. of an el. $w \in W_{\text {aff }}$ s.t. $w\left(\varpi_{r}+\Lambda_{0}\right) \in P^{+}$ (P^{+}: dom. int. wts of $\mathfrak{g}, \Lambda_{0}$: fund. weight of \mathfrak{g}).

How to find the set $S_{\ell}=\left\{e^{a} w_{\ell} \mid \cdots\right\} \subseteq W^{2, \ell}$?

${ }^{\exists}$ combin. formula for dec. $W^{r, \ell} \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{\lambda} V_{0}(\lambda)$ (fermionic formula)
\rightsquigarrow In near adjoint cases, more explicit formulas are obtained from this.
\therefore Since $W^{2, \ell} \cong_{U_{q}\left(\mathfrak{g}_{0}\right)} \bigoplus_{k} V_{0}\left(\mathrm{wt}\left(u_{k}\right)\right)$ must hold, the weights of the vectors $\left\{u_{k}\right\} \subseteq W^{2, \ell}$ in the criterion are previously known.

Observation In previous works (e.g., [Okado-Schilling]): vectors $\left\{u_{k}\right\}$ are written in the forms $e_{i_{1}}^{\left(a_{1}\right)} \cdots e_{i_{p}}^{\left(a_{p}\right)} w_{\ell}\left(a_{1}, \ldots, a_{p} \in \mathbb{Z}_{\geq 0}\right)$. Here $s_{i_{1}} \cdots s_{i_{p}}$: red. exp. of an el. $w \in W_{\text {aff }}$ s.t. $w\left(\varpi_{r}+\Lambda_{0}\right) \in P^{+}$ (P^{+}: dom. int. wts of $\mathfrak{g}, \Lambda_{0}$: fund. weight of \mathfrak{g}).

By assuming this also holds in our cases, the set of vectors $S_{\ell}=\left\{e_{0}^{\left(a_{6}\right)} e_{1}^{\left(a_{5}\right)} e_{2}^{\left(a_{4}\right)} E_{\beta}^{\left(a_{3}\right)} E_{\alpha}^{\left(a_{2}\right)} e_{1,0}^{\left(a_{1}\right)} w_{\ell} \mid \cdots\right\}$ was found.

For the proof of the Main Theorem, we have to check that
(i) $W^{2, \ell} \cong \bigoplus_{u \in S_{\ell}} V_{0}(\operatorname{wt}(u))$,
(ii) $(u, v) \in \delta_{k j}+q A$ for $u, v \in S_{\ell}$ (almost orthonomality),
(iii) $\left\|e_{i} u\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A$ for $u \in S_{\ell}$ and $i \in I_{0}$.

For the proof of the Main Theorem, we have to check that
(i) $W^{2, \ell} \cong \bigoplus_{u \in S_{\ell}} V_{0}(\operatorname{wt}(u))$,
(ii) $(u, v) \in \delta_{k j}+q A$ for $u, v \in S_{\ell}$ (almost orthonomality),
(iii) $\left\|e_{i} u\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A$ for $u \in S_{\ell}$ and $i \in I_{0}$.

As explained above, the assertion (i) holds (since we constructed S_{ℓ} so that this is satisfied).
Hence it remains to prove the assertions (ii) and (iii).

For the proof of the Main Theorem, we have to check that
(i) $W^{2, \ell} \cong \bigoplus_{u \in S_{\ell}} V_{0}(\operatorname{wt}(u))$,
(ii) $(u, v) \in \delta_{k j}+q A$ for $u, v \in S_{\ell}$ (almost orthonomality),
(iii) $\left\|e_{i} u\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A$ for $u \in S_{\ell}$ and $i \in I_{0}$.

As explained above, the assertion (i) holds (since we constructed S_{ℓ} so that this is satisfied).
Hence it remains to prove the assertions (ii) and (iii).

- calculate (u, v) and $\left\|e_{i} u\right\|^{2}$ directly?

For the proof of the Main Theorem, we have to check that
(i) $W^{2, \ell} \cong \bigoplus_{u \in S_{\ell}} V_{0}(\operatorname{wt}(u))$,
(ii) $(u, v) \in \delta_{k j}+q A$ for $u, v \in S_{\ell}$ (almost orthonomality),
(iii) $\left\|e_{i} u\right\|^{2} \in q^{-2\left\langle h_{i}, \operatorname{wt}\left(u_{k}\right)\right\rangle-1} A$ for $u \in S_{\ell}$ and $i \in I_{0}$.

As explained above, the assertion (i) holds (since we constructed S_{ℓ} so that this is satisfied).
Hence it remains to prove the assertions (ii) and (iii).

- calculate (u, v) and $\left\|e_{i} u\right\|^{2}$ directly?
\Leftarrow difficult since the amount of calculation is too enormous

For the proof of the Main Theorem, we have to check that
(i) $W^{2, \ell} \cong \bigoplus_{u \in S_{\ell}} V_{0}(\operatorname{wt}(u))$,
(ii) $(u, v) \in \delta_{k j}+q A$ for $u, v \in S_{\ell}$ (almost orthonomality),
(iii) $\left\|e_{i} u\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}\left(u_{k}\right)\right\rangle-1} A$ for $u \in S_{\ell}$ and $i \in I_{0}$.

As explained above, the assertion (i) holds (since we constructed S_{ℓ} so that this is satisfied).
Hence it remains to prove the assertions (ii) and (iii).

- calculate (u, v) and $\left\|e_{i} u\right\|^{2}$ directly?
\Leftarrow difficult since the amount of calculation is too enormous
idea
Use the theory of global bases in extremal weight modules!

extremal weight modules

affine weight $\mu \in P \rightsquigarrow$ extremal weight module $V(\mu)$ [Kashiwara, 94] ($U_{q}(\mathfrak{g})$-mod. with a generator v_{μ} of weight μ and certain defining rel.)

Note μ : positive (resp. negative) level $\rightsquigarrow V(\mu)$: h.w (resp. I.w) mod. If μ is of level $0, V(\mu)$ is neither of them.

extremal weight modules

affine weight $\mu \in P \rightsquigarrow$ extremal weight module $V(\mu)$ [Kashiwara, 94] ($U_{q}(\mathfrak{g})$-mod. with a generator v_{μ} of weight μ and certain defining rel.)

Note μ : positive (resp. negative) level $\rightsquigarrow V(\mu)$: h.w (resp. I.w) mod. If μ is of level $0, V(\mu)$ is neither of them.

Theorem (Kashiwara, 94)

$V(\mu)$ has a crystal base $(L(V(\mu)), B(V(\mu)))$ and a global basis $\{G(b) \mid b \in B(V(\mu))\}$.

extremal weight modules

affine weight $\mu \in P \rightsquigarrow$ extremal weight module $V(\mu)$ [Kashiwara, 94] $\left(U_{q}(\mathfrak{g})\right.$-mod. with a generator v_{μ} of weight μ and certain defining rel.)

Note μ : positive (resp. negative) level $\rightsquigarrow V(\mu)$: h.w (resp. I.w) mod. If μ is of level $0, V(\mu)$ is neither of them.

Theorem (Kashiwara, 94)

$V(\mu)$ has a crystal base $(L(V(\mu)), B(V(\mu)))$ and a global basis $\{G(b) \mid b \in B(V(\mu))\}$.

Theorem (Beck-Nakajima, 04)
$V(\mu)$ has a prepolarization $($,$) , and we have \left(G(b), G\left(b^{\prime}\right)\right) \in \delta_{b b^{\prime}}+q A$.

We will give a sketch of the proof for the almost orthonormality: $\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right) \in \delta_{\boldsymbol{a} \boldsymbol{a}^{\prime}}+q A \quad\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell} \in S_{\ell}\right)$.

We will give a sketch of the proof for the almost orthonormality: $\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right) \in \delta_{\boldsymbol{a} \boldsymbol{a}^{\prime}}+q A \quad\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell} \in S_{\ell}\right)$.

Lemma
$\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right)=0$ if $\boldsymbol{a} \neq \boldsymbol{a}^{\prime}$.
Hence it suffices to show that $\left\|e^{a} w_{\ell}\right\|^{2} \in 1+q A$ if $e^{a} w_{\ell} \in S_{\ell}$.

We will give a sketch of the proof for the almost orthonormality:

$$
\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right) \in \delta_{\boldsymbol{a} \boldsymbol{a}^{\prime}}+q A \quad\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell} \in S_{\ell}\right)
$$

Lemma

$\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right)=0$ if $\boldsymbol{a} \neq \boldsymbol{a}^{\prime}$.
Hence it suffices to show that $\left\|e^{a} w_{\ell}\right\|^{2} \in 1+q A$ if $e^{a} w_{\ell} \in S_{\ell}$.

Lemma

$e^{a} v_{\ell \varpi_{2}} \in V\left(\ell \varpi_{2}\right)$ belongs to the global basis of $V\left(\ell \varpi_{2}\right)$.

We will give a sketch of the proof for the almost orthonormality:

$$
\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right) \in \delta_{\boldsymbol{a} \boldsymbol{a}^{\prime}}+q A \quad\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell} \in S_{\ell}\right)
$$

Lemma

$\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right)=0$ if $\boldsymbol{a} \neq \boldsymbol{a}^{\prime}$.
Hence it suffices to show that $\left\|e^{a} w_{\ell}\right\|^{2} \in 1+q A$ if $e^{a} w_{\ell} \in S_{\ell}$.

Lemma

$e^{a} v_{\ell \varpi_{2}} \in V\left(\ell \varpi_{2}\right)$ belongs to the global basis of $V\left(\ell \varpi_{2}\right)$.
pf.) First prove that $e^{\boldsymbol{a}} v_{-3 \ell \Lambda_{0}} \in \mathrm{gl}$. basis of $V\left(-3 \ell \Lambda_{0}\right)$

We will give a sketch of the proof for the almost orthonormality:

$$
\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right) \in \delta_{\boldsymbol{a} \boldsymbol{a}^{\prime}}+q A \quad\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell} \in S_{\ell}\right)
$$

Lemma

$\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right)=0$ if $\boldsymbol{a} \neq \boldsymbol{a}^{\prime}$.
Hence it suffices to show that $\left\|e^{a} w_{\ell}\right\|^{2} \in 1+q A$ if $e^{a} w_{\ell} \in S_{\ell}$.

Lemma

$e^{a} v_{\ell \varpi_{2}} \in V\left(\ell \varpi_{2}\right)$ belongs to the global basis of $V\left(\ell \varpi_{2}\right)$.
pf.) First prove that $e^{a} v_{-3 \ell \Lambda_{0}} \in \mathrm{gl}$. basis of $V\left(-3 \ell \Lambda_{0}\right)$
$\Rightarrow v_{\ell \Lambda_{2}} \otimes e^{a} u_{-3 \ell \Lambda_{0}} \in \mathrm{gl}$. basis of $V\left(\ell \Lambda_{2}\right) \otimes V\left(-3 \ell \Lambda_{0}\right)$ [Lusztig]

We will give a sketch of the proof for the almost orthonormality:

$$
\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right) \in \delta_{\boldsymbol{a} a^{\prime}}+q A \quad\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell} \in S_{\ell}\right)
$$

Lemma

 $\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right)=0$ if $\boldsymbol{a} \neq \boldsymbol{a}^{\prime}$.Hence it suffices to show that $\left\|e^{a} w_{\ell}\right\|^{2} \in 1+q A$ if $e^{a} w_{\ell} \in S_{\ell}$.

Lemma

$e^{a} v_{\ell \varpi_{2}} \in V\left(\ell \varpi_{2}\right)$ belongs to the global basis of $V\left(\ell \varpi_{2}\right)$.
pf.) First prove that $e^{a} v_{-3 \ell \Lambda_{0}} \in \mathrm{gl}$. basis of $V\left(-3 \ell \Lambda_{0}\right)$
$\Rightarrow v_{\ell \Lambda_{2}} \otimes e^{a} u_{-3 \ell \Lambda_{0}} \in \mathrm{gl}$. basis of $V\left(\ell \Lambda_{2}\right) \otimes V\left(-3 \ell \Lambda_{0}\right)$ [Lusztig]
Fact ${ }^{\exists}$ hom. $V\left(\ell \Lambda_{2}\right) \otimes V\left(-3 \ell \Lambda_{0}\right) \rightarrow V\left(\ell \varpi_{2}\right)$ preserving global bases. (note that $\left.\ell \varpi_{2}=\ell \Lambda_{2}-3 \ell \Lambda_{0}.\right)$

We will give a sketch of the proof for the almost orthonormality:

$$
\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right) \in \delta_{\boldsymbol{a} a^{\prime}}+q A \quad\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell} \in S_{\ell}\right)
$$

Lemma

$$
\left(e^{\boldsymbol{a}} w_{\ell}, e^{\boldsymbol{a}^{\prime}} w_{\ell}\right)=0 \text { if } \boldsymbol{a} \neq \boldsymbol{a}^{\prime} .
$$

Hence it suffices to show that $\left\|e^{a} w_{\ell}\right\|^{2} \in 1+q A$ if $e^{a} w_{\ell} \in S_{\ell}$.

Lemma

$e^{a} v_{\ell \varpi_{2}} \in V\left(\ell \varpi_{2}\right)$ belongs to the global basis of $V\left(\ell \varpi_{2}\right)$.
pf.) First prove that $e^{a} v_{-3 \ell \Lambda_{0}} \in \mathrm{gl}$. basis of $V\left(-3 \ell \Lambda_{0}\right)$
$\Rightarrow v_{\ell \Lambda_{2}} \otimes e^{a} u_{-3 \ell \Lambda_{0}} \in \mathrm{gl}$. basis of $V\left(\ell \Lambda_{2}\right) \otimes V\left(-3 \ell \Lambda_{0}\right)$ [Lusztig]
Fact ${ }^{\exists}$ hom. $V\left(\ell \Lambda_{2}\right) \otimes V\left(-3 \ell \Lambda_{0}\right) \rightarrow V\left(\ell \varpi_{2}\right)$ preserving global bases. (note that $\ell \varpi_{2}=\ell \Lambda_{2}-3 \ell \Lambda_{0}$.)

Cor. $\left\|e^{a} v_{\ell \omega_{2}}\right\|^{2} \in 1+q A$ by the previous theorem.

Lemma

$\left\|e^{\boldsymbol{a}} v_{\ell \varpi_{2}}\right\|^{2}\left(\right.$ in $\left.V\left(\ell \varpi_{2}\right)\right)=\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes \ell}\right\|^{2}\left(\right.$ in $\left.\left(W^{2,1}\right)^{\otimes \ell}\right)$.

Lemma

$\left\|e^{\boldsymbol{a}} v_{\ell \varpi_{2}}\right\|^{2}\left(\right.$ in $\left.V\left(\ell \varpi_{2}\right)\right)=\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes \ell}\right\|^{2}\left(\right.$ in $\left.\left(W^{2,1}\right)^{\otimes \ell}\right)$.
pf.) (i) ${ }^{\exists}$ inj. hom. $V\left(\ell \varpi_{2}\right) \hookrightarrow V\left(\varpi_{2}\right)^{\otimes \ell}$ [Nakajima].
(ii) $V\left(\varpi_{2}\right) \cong \mathbb{Q}\left[z, z^{-1}\right] \otimes W^{2,1} \Rightarrow{ }^{\exists}$ hom. $V\left(\varpi_{2}\right) \xrightarrow{(z=1)} W^{2,1}$.

Lemma

$\left\|e^{\boldsymbol{a}} v_{\ell \varpi_{2}}\right\|^{2}\left(\right.$ in $\left.V\left(\ell \varpi_{2}\right)\right)=\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes \ell}\right\|^{2}\left(\right.$ in $\left.\left(W^{2,1}\right)^{\otimes \ell}\right)$.
pf.) (i) ${ }^{\exists}$ inj. hom. $V\left(\ell \varpi_{2}\right) \hookrightarrow V\left(\varpi_{2}\right)^{\otimes \ell}$ [Nakajima].
(ii) $V\left(\varpi_{2}\right) \cong \mathbb{Q}\left[z, z^{-1}\right] \otimes W^{2,1} \Rightarrow{ }^{\exists}$ hom. $V\left(\varpi_{2}\right) \xrightarrow{(z=1)} W^{2,1}$.

Check $V\left(\ell \varpi_{2}\right) \hookrightarrow V\left(\varpi_{2}\right)^{\otimes \ell} \xrightarrow{(z=1)^{\otimes \ell}}\left(W^{2,1}\right)^{\otimes \ell}$ preserves $\left\|e^{a} *\right\|^{2}$.

Lemma

$\left\|e^{\boldsymbol{a}} v_{\ell \varpi_{2}}\right\|^{2}\left(\right.$ in $\left.V\left(\ell \varpi_{2}\right)\right)=\left\|e^{a}\left(w_{1}\right)^{\otimes \ell}\right\|^{2}\left(\right.$ in $\left.\left(W^{2,1}\right)^{\otimes \ell}\right)$.
pf.) (i) ${ }^{\exists}$ inj. hom. $V\left(\ell \varpi_{2}\right) \hookrightarrow V\left(\varpi_{2}\right)^{\otimes \ell}$ [Nakajima].
(ii) $V\left(\varpi_{2}\right) \cong \mathbb{Q}\left[z, z^{-1}\right] \otimes W^{2,1} \Rightarrow{ }^{\exists}$ hom. $V\left(\varpi_{2}\right) \stackrel{(z=1)}{\rightarrow} W^{2,1}$.

Check $V\left(\ell \varpi_{2}\right) \hookrightarrow V\left(\varpi_{2}\right)^{\otimes \ell} \xrightarrow{(z=1)^{\otimes \ell}}\left(W^{2,1}\right)^{\otimes \ell}$ preserves $\left\|e^{a} *\right\|^{2}$.
By combining this with the previous corollary, we have $\left\|e^{a}\left(w_{1}\right)^{\otimes \ell}\right\|^{2} \in 1+q A$, and hence it suffices to show the following:

Lemma

$$
\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes \ell}\right\|^{2}\left(\text { in }\left(W^{2,1}\right)^{\otimes \ell}\right)=\left\|e^{\boldsymbol{a}} w_{\ell}\right\|^{2}\left(\text { in } W^{2, \ell}\right)
$$

For simplicity, assume $\ell=2$.
pf of $\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}\left(\right.$ in $\left.\left(W^{2,1}\right)^{\otimes 2}\right)=\left\|e^{a_{2}} w_{2}\right\|^{2}\left(\right.$ in $\left.W^{2,2}\right)$
$\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}=\left\|\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}\right\|^{2}$

$$
\text { pf of }\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}\left(\text { in }\left(W^{2,1}\right)^{\otimes 2}\right)=\left\|e^{\boldsymbol{a}} w_{2}\right\|^{2}\left(\text { in } W^{2,2}\right)
$$

$$
\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}=\left\|\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}\right\|^{2}
$$

$$
=\sum_{\boldsymbol{b}, \boldsymbol{b}^{\prime}} q^{c(\boldsymbol{b})+c\left(\boldsymbol{b}^{\prime}\right)}\left(e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}, e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1}\right)\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)
$$

$$
\text { pf of }\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}\left(\text { in }\left(W^{2,1}\right)^{\otimes 2}\right)=\left\|e^{a_{1}} w_{2}\right\|^{2}\left(\text { in } W^{2,2}\right)
$$

$$
\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}=\left\|\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}\right\|^{2}
$$

$$
=\sum_{\boldsymbol{b}, \boldsymbol{b}^{\prime}} q^{c(\boldsymbol{b})+c\left(\boldsymbol{b}^{\prime}\right)}\left(e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}, e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1}\right)\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)
$$

$$
=\sum_{\boldsymbol{b}} q^{2 c(\boldsymbol{b})}\left\|e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}\right\|^{2}\left\|e^{\boldsymbol{b}} w_{1}\right\|^{2} \quad\left(\because\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)=0 \text { unless } \boldsymbol{b}=\boldsymbol{b}^{\prime}\right)
$$

$$
\text { pf of }\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}\left(\text { in }\left(W^{2,1}\right)^{\otimes 2}\right)=\left\|e^{a_{1}} w_{2}\right\|^{2}\left(\text { in } W^{2,2}\right)
$$

$\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}=\left\|\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}\right\|^{2}$
$=\sum_{\boldsymbol{b}, \boldsymbol{b}^{\prime}} q^{c(\boldsymbol{b})+c\left(\boldsymbol{b}^{\prime}\right)}\left(e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}, e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1}\right)\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)$
$=\sum_{\boldsymbol{b}} q^{2 c(\boldsymbol{b})}\left\|e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}\right\|^{2}\left\|e^{\boldsymbol{b}} w_{1}\right\|^{2} \quad\left(\because\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)=0\right.$ unless $\left.\boldsymbol{b}=\boldsymbol{b}^{\prime}\right)$
recall $(R(u), R(v))=(u, R(v))^{\prime}$, where $R: W_{q}^{2} \otimes W_{q^{-1}}^{2} \xrightarrow{R} W_{q^{-1}}^{2} \otimes W_{q}^{2}$.

$$
\text { pf of }\left\|e^{a}\left(w_{1}\right)^{\otimes 2}\right\|^{2}\left(\text { in }\left(W^{2,1}\right)^{\otimes 2}\right)=\left\|e^{a} w_{2}\right\|^{2}\left(\text { in } W^{2,2}\right)
$$

$\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}=\left\|\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}\right\|^{2}$
$=\sum_{\boldsymbol{b}, \boldsymbol{b}^{\prime}} q^{c(\boldsymbol{b})+c\left(\boldsymbol{b}^{\prime}\right)}\left(e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}, e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1}\right)\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)$
$=\sum_{\boldsymbol{b}} q^{2 c(\boldsymbol{b})}\left\|e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}\right\|^{2}\left\|e^{\boldsymbol{b}} w_{1}\right\|^{2} \quad\left(\because\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)=0\right.$ unless $\left.\boldsymbol{b}=\boldsymbol{b}^{\prime}\right)$
recall $(R(u), R(v))=(u, R(v))^{\prime}$, where $R: W_{q}^{2} \otimes W_{q^{-1}}^{2} \xrightarrow{R} W_{q^{-1}}^{2} \otimes W_{q}^{2}$.
$\left\|e^{a} w_{2}\right\|^{2}=\left(e^{a}\left(w_{1}\right)^{\otimes 2}, e^{a}\left(w_{1}\right)^{\otimes 2}\right)^{\prime} \quad\left(\right.$ on $\left.\left(W_{q}^{2} \otimes W_{q^{-1}}^{2}\right) \times\left(W_{q^{-1}}^{2} \otimes W_{q}^{2}\right)\right)$
$=\left(\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})+d(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}, \sum_{\boldsymbol{b}^{\prime}} q^{c\left(\boldsymbol{b}^{\prime}\right)-d\left(\boldsymbol{b}^{\prime}\right)} e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1} \otimes e^{\boldsymbol{b}^{\prime}} w_{1}\right)^{\prime}$

$$
\text { pf of }\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}\left(\text { in }\left(W^{2,1}\right)^{\otimes 2}\right)=\left\|e^{a_{1}} w_{2}\right\|^{2}\left(\text { in } W^{2,2}\right)
$$

$$
\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}=\left\|\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}\right\|^{2}
$$

$$
=\sum_{\boldsymbol{b}, \boldsymbol{b}^{\prime}} c^{c(\boldsymbol{b})+c\left(\boldsymbol{b}^{\prime}\right)}\left(e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}, e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1}\right)\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)
$$

$$
=\sum_{\boldsymbol{b}} q^{2 c(\boldsymbol{b})}\left\|e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}\right\|^{2}\left\|e^{\boldsymbol{b}} w_{1}\right\|^{2} \quad\left(\because\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)=0 \text { unless } \boldsymbol{b}=\boldsymbol{b}^{\prime}\right)
$$

recall $(R(u), R(v))=(u, R(v))^{\prime}$, where $R: W_{q}^{2} \otimes W_{q^{-1}}^{2} \xrightarrow{R} W_{q^{-1}}^{2} \otimes W_{q}^{2}$.

$$
\left\|e^{\boldsymbol{a}} w_{2}\right\|^{2}=\left(e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}, e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right)^{\prime} \quad\left(\text { on }\left(W_{q}^{2} \otimes W_{q^{-1}}^{2}\right) \times\left(W_{q^{-1}}^{2} \otimes W_{q}^{2}\right)\right)
$$

$$
=\left(\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})+d(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}, \sum_{\boldsymbol{b}^{\prime}} q^{c\left(\boldsymbol{b}^{\prime}\right)-d\left(\boldsymbol{b}^{\prime}\right)} e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1} \otimes e^{\boldsymbol{b}^{\prime}} w_{1}\right)^{\prime}
$$

$$
=\sum_{\boldsymbol{b}} q^{2 c(\boldsymbol{b})}\left\|e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}\right\|^{2}\left\|e^{\boldsymbol{b}} w_{1}\right\|^{2}
$$

$$
\text { pf of }\left\|e^{a}\left(w_{1}\right)^{\otimes 2}\right\|^{2}\left(\text { in }\left(W^{2,1}\right)^{\otimes 2}\right)=\left\|e^{a} w_{2}\right\|^{2}\left(\text { in } W^{2,2}\right)
$$

$\left\|e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right\|^{2}=\left\|\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}\right\|^{2}$
$=\sum_{\boldsymbol{b}, \boldsymbol{b}^{\prime}} q^{c(\boldsymbol{b})+c\left(\boldsymbol{b}^{\prime}\right)}\left(e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}, e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1}\right)\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)$
$=\sum_{\boldsymbol{b}} q^{2 c(\boldsymbol{b})}\left\|e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}\right\|^{2}\left\|e^{\boldsymbol{b}} w_{1}\right\|^{2} \quad\left(\because\left(e^{\boldsymbol{b}} w_{1}, e^{\boldsymbol{b}^{\prime}} w_{1}\right)=0\right.$ unless $\left.\boldsymbol{b}=\boldsymbol{b}^{\prime}\right)$
recall $(R(u), R(v))=(u, R(v))^{\prime}$, where $R: W_{q}^{2} \otimes W_{q^{-1}}^{2} \xrightarrow{R} W_{q^{-1}}^{2} \otimes W_{q}^{2}$.

$$
\left\|e^{\boldsymbol{a}} w_{2}\right\|^{2}=\left(e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}, e^{\boldsymbol{a}}\left(w_{1}\right)^{\otimes 2}\right)^{\prime} \quad\left(\text { on }\left(W_{q}^{2} \otimes W_{q^{-1}}^{2}\right) \times\left(W_{q^{-1}}^{2} \otimes W_{q}^{2}\right)\right)
$$

$=\left(\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})+d(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_{1} \otimes e^{\boldsymbol{b}} w_{1}, \sum_{\boldsymbol{b}^{\prime}} q^{c\left(\boldsymbol{b}^{\prime}\right)-d\left(\boldsymbol{b}^{\prime}\right)} e^{\boldsymbol{a}-\boldsymbol{b}^{\prime}} w_{1} \otimes e^{\boldsymbol{b}^{\prime}} w_{1}\right)^{\prime}$
$=\sum_{\boldsymbol{b}} q^{2 c(\boldsymbol{b})}\left\|e^{\boldsymbol{a}-\boldsymbol{b}} w_{1}\right\|^{2}\left\|e^{\boldsymbol{b}} w_{1}\right\|^{2}$.
pf of $\left\|e_{i} u\right\|^{2} \in q^{-2\left\langle h_{i}, \mathrm{wt}(u)\right\rangle-1} A$ is in a similar spirit.

Future work: remaining cases

In these cases the fermionic formula is quite complicated \rightsquigarrow no explicit, closed formula for dec. $W^{r, \ell} \cong \bigoplus V_{0}(\mathrm{wt}(u))$ so far. Hence it is difficult to find the vectors $\left\{u_{k}\right\}$ in the criterion.

Future work: remaining cases

In these cases the fermionic formula is quite complicated \rightsquigarrow no explicit, closed formula for dec. $W^{r, \ell} \cong \bigoplus V_{0}(\mathrm{wt}(u))$ so far. Hence it is difficult to find the vectors $\left\{u_{k}\right\}$ in the criterion.
${ }^{\exists}$ algorithm: $\left(\right.$ dec. of $\left.W^{r, \ell}\right) \rightarrow\left(\right.$ dec. of $\left.W^{r, \ell+1}\right)$
(Kleber algorithm)

Future work: remaining cases

In these cases the fermionic formula is quite complicated \rightsquigarrow no explicit, closed formula for dec. $W^{r, \ell} \cong \bigoplus V_{0}(\mathrm{wt}(u))$ so far. Hence it is difficult to find the vectors $\left\{u_{k}\right\}$ in the criterion.
${ }^{\exists}$ algorithm: $\left(\right.$ dec. of $\left.W^{r, \ell}\right) \rightarrow\left(\right.$ dec. of $\left.W^{r, \ell+1}\right)$
(Kleber algorithm)
Q. Can we find an algorithm:
(vectors of $W^{r, \ell}$ in the criterion) \rightarrow (vectors of $W^{r, \ell+1}$ in the criterion) corresponding to the Kleber algorithm?

