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Introduction

g: affine Lie algebra/Q without a degree op. d,

(e.g. g = g0 ⊗Q[t, t−1]⊕QK, g0: simple Lie alg.)

I = {0, 1, . . . , n}: set of nodes of the Dynkin diag. of g,

U ′
q(g) = Q(q)⟨ei, fi, qhi | i ∈ I⟩: quantum affine algebra

(associative Q(q)-alg. defined as a q-deformation of U(g))

Some of f.d. simple U ′
q(g)-modules have crystal bases,

but not all of them do!

Problem Classify f.d. simple U ′
q(g)-modules having crystal bases.

Conjecture (Hatayama,Kuniba,Okado,Takgagi,Yamada/Tsuboi, 99-01)

Kirillov-Reshetikhin (KR) module W r,ℓ has a crystal base.

KR mod. W r,ℓ: a family of f.d. simple U ′
q(g)-mod (r ∈ I \ {0}, ℓ ∈ Z>0)

2 / 24
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Conjecture

Kirillov-Reshetikhin (KR) module W r,ℓ has a crystal base.

Theorem

The conjecture holds for W r,ℓ if

(1) ℓ = 1 [Kashiwara, 02]

(2) g: nonexceptional type (A
(1,2)
n ,B

(1)
n ,C

(1)
n ,D

(1,2)
n ) [Okado–Schilling, 08]

(3) g: type G
(1)
2 , D

(3)
4 [N, 18]

(4) W r,ℓ is multiplicity free as a Uq(g0)-module [Biswal–Scrimshaw, 19]

(5) r: near adjoint node in types E
(1)
6,7,8, F

(1)
4 , E

(2)
6 ⇐ Today

◦
0

◦
adjoint

◦
near adjoint

in Dynkin diagram of g

Except (1), a slightly weak version is proved (∃a crystal pseudobase).
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Summary: Status of the conjecture

exceptional types

Conj. has been proved for W r,ℓ (ℓ ∈ Z>0) with r = • (previous results)
today: r = • (near adjoint node)

E
(1)
6 : •

•
•
0
• ◦ • •

E
(1)
7 : •

•
0
• ◦ ◦ ◦ • •

E
(1)
8 : ◦

•
0
• ◦ ◦ ◦ ◦ ◦ •

F
(1)
4 : •

0
• ◦ +3◦ •

E
(2)
6 : •

0
• ◦ks ◦ • G

(1)
2 : •

0
• *4• D

(3)
4 : •

0
•jt •

Rem. In all types, the local diagrams are the same: •
0
◦ •
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Plan

1 Basic notions

Crystal bases and pseudobases

KR modules

Prepolarization

2 Criterion for the existence of a crystal pseudobase

by [Kang–Kashiwara–Misra–Miwa–Nakashima–Nakayashiki, 92]

3 Proof

4 Future work

5 / 24



Basic notions Criterion for ∃cry. p.base Proof Future work

Plan

1 Basic notions

Crystal bases and pseudobases

KR modules

Prepolarization

2 Criterion for the existence of a crystal pseudobase

by [Kang–Kashiwara–Misra–Miwa–Nakashima–Nakayashiki, 92]

3 Proof

4 Future work

5 / 24



Basic notions Criterion for ∃cry. p.base Proof Future work

Plan

1 Basic notions

Crystal bases and pseudobases

KR modules

Prepolarization

2 Criterion for the existence of a crystal pseudobase

by [Kang–Kashiwara–Misra–Miwa–Nakashima–Nakayashiki, 92]

3 Proof

4 Future work

5 / 24



Basic notions Criterion for ∃cry. p.base Proof Future work

Plan

1 Basic notions

Crystal bases and pseudobases

KR modules

Prepolarization

2 Criterion for the existence of a crystal pseudobase

by [Kang–Kashiwara–Misra–Miwa–Nakashima–Nakayashiki, 92]

3 Proof

4 Future work

5 / 24



Basic notions Criterion for ∃cry. p.base Proof Future work

crystal base and pseudobase

g: affine Lie algebra with index set I = {0, . . . , n},

U ′
q(g): quantum affine algebra without degree operator qd

(associative Q(q)-algebra generated by ei, fi, q
hi (i ∈ I)) ,

M : integrable U ′
q(g)-module,

ei, fi ↷ M (i ∈ I)
“twist”⇝ ẽi, f̃i ↷ M (i ∈ I): Kashiwara operators
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Definition

(1) A pair (L,B) is called a crystal base if

(a) L: A-lattice of M (A := {f/g | g(0) ̸= 0} ⊆ Q(q): local subring),

(b) B ⊆ L/qL: a Q-basis,

(c) L =
⊕

λ Lλ, B =
⊔

λBλ (i.e. compatible with weight dec.),

(d) ẽiL, f̃iL ⊆ L (⇒ ẽi, f̃i ↷ L/qL),

(e) ẽib, f̃ib ∈ B ⊔ {0} for b ∈ B,

(f) ẽib = b′ ⇔ b = f̃ib
′ for b, b′ ∈ B.

(2) A pair (L,B) is called a crystal pseudobase if (a), (c)–(f) and

(b’) ∃B′ ⊆ L/qL: a Q-basis s.t. B = B′ ⊔ −B′.

Rem. In the same way with crystal bases, from a crystal pseudobase

we can construct a crystal graph (I-colored oriented graph)

⇝ combinatorial formulas for tensor products, branching rules, etc.
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(e) ẽib, f̃ib ∈ B ⊔ {0} for b ∈ B,
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Kirillov-Reshetikhin (KR) modules

U ′
q(g) ⊇ Uq(g0) := Q(q)⟨ei, fi, qhi | i ∈ I0 := I \ {0}⟩

P0: weight lattice of g0, P+
0 : set of dominant integral weights of g0,

ϖi ∈ P+
0 (i ∈ I0): fundamental weight of g0 (i.e. ⟨hi, ϖj⟩ = δij)

Fact {isom. classes of simple Uq(g0)-modules} 1:1←→ P+
0

∈ ∈

V0(λ) λ

8 / 24
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W r (r ∈ I0): fundamental module defined by [Kashiwara, 02]

(f.d. simple U ′
q(g)-module having a crystal base with highest weight ϖr)

For r ∈ I0 and k ∈ Z, define a U ′
q(g)-module W r

qk
as follows:

W r
qk

= W r as vector sp., and denoting by ρ the new action, we have

ρ(ei)v = qδ0ikeiv, ρ(fi)v = q−δ0ikfiv, ρ(qhi)v = qhiv.

For r ∈ I0 and ℓ ∈ Z>0, consider a nontrivial U ′
q(g)-module hom.

W r
qℓ−1 ⊗W r

qℓ−3 ⊗ · · · ⊗W r
q−ℓ+1

R→W r
q−ℓ+1 ⊗ · · · ⊗W r

qℓ−3 ⊗W r
qℓ−1 .

Definition

W r,ℓ := ImR: Kirillov-Reshetikhin (KR) modules

Note W r,1 = W r.

9 / 24
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Main Theorem

Theorem (N–Scrimshaw)

If g is either of type E
(1)
6,7,8, F

(1)
4 or E

(2)
6 and r is near adjoint,

then the KR module W r,ℓ has a crystal pseudobase for every ℓ.

E
(1)
6 : ◦

◦
◦
0
◦ • ◦ ◦

E
(1)
7 : ◦
◦
0
◦ • ◦ ◦ ◦ ◦

F
(1)
4 : ◦

0
◦ • +3◦ ◦

E
(1)
8 : ◦

◦
0
◦ • ◦ ◦ ◦ ◦ ◦

E
(2)
6 : ◦

0
◦ • ks ◦ ◦

In the proof, we use a criterion introduced by [KKMMNN]:

(∃crystal pseudobase) ⇐ statements on a prepolarization ( , )
10 / 24



Basic notions Criterion for ∃cry. p.base Proof Future work

Main Theorem

Theorem (N–Scrimshaw)

If g is either of type E
(1)
6,7,8, F

(1)
4 or E

(2)
6 and r is near adjoint,

then the KR module W r,ℓ has a crystal pseudobase for every ℓ.

E
(1)
6 : ◦

◦
◦
0
◦ • ◦ ◦

E
(1)
7 : ◦
◦
0
◦ • ◦ ◦ ◦ ◦

F
(1)
4 : ◦

0
◦ • +3◦ ◦

E
(1)
8 : ◦

◦
0
◦ • ◦ ◦ ◦ ◦ ◦

E
(2)
6 : ◦

0
◦ • ks ◦ ◦

In the proof, we use a criterion introduced by [KKMMNN]:

(∃crystal pseudobase) ⇐ statements on a prepolarization ( , )
10 / 24



Basic notions Criterion for ∃cry. p.base Proof Future work

prepolarization

Define an anti-involution Ψ of U ′
q(g) by

Ψ(ei) = q−1
i q−hi

i fi, Ψ(fi) = q−1
i qhi

i ei, Ψ(qhi) = qhi ,

where qi = qci with a certain positive integer ci.

Definition

Let M be a U ′
q(g)-module, and ( , ) a Q(q)-bilinear form on M .

We say ( , ) is a prepolarization on M if it is symmetric

and satisfies (xu, v) = (u,Ψ(x)v) for x ∈ U ′
q(g) and u, v ∈M .

In this talk, we often use the notation ||u||2 = (u, u).
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Proposition

W r,ℓ has a prepolarization ( , ).

Construction of this prepolarization

Recall W r,ℓ := ImR, where

W r
qℓ−1 ⊗ · · · ⊗W r

q−ℓ+1

R→W r
q−ℓ+1 ⊗ · · · ⊗W r

qℓ−1

Fact W r has a prepolarization ( , ).

⇝ natural pairing ( , ) between W r
qk

and W r
q−k for any k ∈ Z.

⇝ (u1 ⊗ · · · ⊗ uℓ, v1 ⊗ · · · ⊗ vℓ)
′ = (u1, v1) · · · (uℓ, vℓ) defines a pairing

between W r
qℓ−1 ⊗ · · · ⊗W r

q−ℓ+1 and W r
q−ℓ+1 ⊗ · · · ⊗W r

qℓ−1 .

Then
(
R(u), R(v)

)
:=

(
u,R(v)

)′
for u, v ∈W r

qℓ−1 ⊗ · · · ⊗W r
q−ℓ+1
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Criterion for the existence of crystal pseudobase

Theorem (KKMMNN)

Let M be a f.d. U ′
q(g)-module, and assume that

(1) M has a prepolarization ( , ),

(2) ∃“suitable Z-form” MZ in M ,

(3) there exists a set of vectors S = {u1, . . . , um} ⊆MZ s.t.

(i) M ∼=Uq(g0)

⊕m
k=1 V0

(
wt(uk)

)
,

(ii) (uk, uj) ∈ δkj + qA (∀k, j) (almost orthonomality)

(iii) ||eiuk||2 ∈ q
−2⟨hi,wt(uk)⟩−1
i A (∀i ∈ I0,

∀k).

Then, setting

L := {u ∈M | ||u||2 ∈ A}, B := {b ∈ (MZ ∩ L)/(MZ ∩ qL) | ||b||2 = 1},
(L,B) is a crystal pseudobase of M .

Note (ii) ⇒ bk := uk ∈ B, (iii) ⇒ ẽibk = 0 (i ∈ I0).

So (i)–(iii) imply that there exist enough Uq(g0)-h.w. elements in B.
13 / 24
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what we need to do in KR module case

(1) M has a prepolarization ( , ),

(2) ∃“suitable Z-form” MZ in M ,

(3) there exists a set of vectors S = {u1, . . . , um} ⊆MZ s.t.

(i) M ∼=Uq(g0)

⊕m
k=1 V0

(
wt(uk)

)
,

(ii) (uk, uj) ∈ δkj + qA (∀k, j) (almost orthonomality)

(iii) ||eiuk||2 ∈ q−2⟨hi,wt(uk)⟩−1A (∀i ∈ I0,
∀k).

(1) and (2) are known to hold for all the KR modules W r,ℓ.

Hence what we have to do is the following:

(a) Find a suitable set Sℓ = {u1, . . . , um} ⊆W r,ℓ,

(b) Check that these vectors satisfy (i), (ii) and (iii).
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Proof of the main theorem

Theorem (N–Scrimshaw)

If g is either of type E
(1)
6,7,8, F

(1)
4 or E

(2)
6 and r is near adjoint,

then the KR module W r,ℓ has a crystal pseudobase for every ℓ.

In the sequel, assume that g is either of type E
(1)
6,7,8, F

(1)
4 or E

(2)
6 ,

and the nodes are labelled as ◦
0
◦
1
•
2

(i.e., 2: near adjoint node)

We have to

(a) Find a suitable set Sℓ = {u1, . . . , um} ⊆W 2,ℓ,

(b) Check that these vectors satisfy (i) W 2,ℓ ∼=
⊕

V0

(
wt(uk

))
,

(ii) (uk, uj) ∈ δkj + qA and (iii) ||eiuk||2 ∈ q−2⟨hi,wt(uk)⟩−1A.
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Construction of the set of vectors Sℓ in the criterion

Notation [m] = (qm − q−m)/(q − q−1), [m]! = [m] · · · [1],
Set e

(m)
i = emi /[m]! for i ∈ I (q-devided power),

wℓ ∈W 2,ℓ
ℓϖ2

: a highest weight vector s.t. ||wℓ||2 = 1,

For a seq. i1, i2, . . . , ip of elements of I, e
(m)
i1,i2,...,ip

:= e
(m)
i1

e
(m)
i2
· · · e(m)

ip
.

For a = (a1, . . . , a6) ∈ Z6
≥0, e

a := e
(a6)
0 e

(a5)
1 e

(a4)
2 E

(a3)
β E

(a2)
α e

(a1)
1,0 ,

where E
(a)
α , E

(a)
β are some prod. of e

(a)
i ’s ⇐ defined in the next slide

Definition

For ℓ ∈ Z>0, define a subset Sℓ ⊆W 2,ℓ by

Sℓ := {eawℓ | a6 ≤ a5 ≤ a4 ≤ a3 ≤ a2, a2 + a3 + a4− a5 ≤ a1 ≤ a4 + ℓ}.
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Assume that g is either of type E
(1)
6,7,8.

α: the highest root of I \ {0, 1},

E
(1)
6 : ◦

◦
◦
0
◦
1
◦ ◦ ◦

E
(1)
7 : ◦
◦
0
◦
1
◦ ◦ ◦ ◦ ◦

E
(1)
8 : ◦
◦
0
◦
1
◦ ◦ ◦ ◦ ◦ ◦

Set E
(a)
α := e

(a)
i1,...,ir,2

, E
(a)
β := e

(a)
j1,...,js,2

for m ∈ Z≥0, where

i1, . . . , ir: a (nonredundant) seq. of el. of I s.t. si1 · · · sir(α2) = α,

j1, . . . , js: a (nonredundant) seq. of el. of I s.t. sj1 · · · sjs(α2) = β,

Ex. (g = E
(1)
6 )

α = α2 + α3 + α4 + α5 + α6 = s6s5s4s3(α2)⇒ E
(m)
α = e

(m)
6,5,4,3,2,

β = α2 + α3 + α4 = s4s3(α2) ⇒ E
(m)
β = e

(m)
4,3,2

In types F
(1)
4 , E

(2)
6 , one defines E

(m)
α , E

(m)
β in a slmilar way.
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How to find the set Sℓ = {eawℓ | · · · } ⊆ W 2,ℓ?

∃combin. formula for dec. W r,ℓ ∼=Uq(g0)

⊕
λ V0(λ) (fermionic formula)

⇝ In near adjoint cases, more explicit formulas are obtained from this.

∴ Since W 2,ℓ ∼=Uq(g0)

⊕
k V0

(
wt(uk)

)
must hold, the weights of

the vectors {uk} ⊆W 2,ℓ in the criterion are previously known.

Observation In previous works (e.g., [Okado-Schilling]):

vectors {uk} are written in the forms e
(a1)
i1
· · · e(ap)ip

wℓ (a1, . . . , ap ∈ Z≥0).

Here si1 · · · sip : red. exp. of an el. w ∈Waff s.t. w(ϖr + Λ0) ∈ P+

(P+: dom. int. wts of g, Λ0: fund. weight of g).

By assuming this also holds in our cases,

the set of vectors Sℓ = {e
(a6)
0 e

(a5)
1 e

(a4)
2 E

(a3)
β E

(a2)
α e

(a1)
1,0 wℓ | · · · } was found.

18 / 24
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⊕
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∴ Since W 2,ℓ ∼=Uq(g0)

⊕
k V0

(
wt(uk)

)
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For the proof of the Main Theorem, we have to check that

(i) W 2,ℓ ∼=
⊕

u∈Sℓ
V0

(
wt(u)

)
,

(ii) (u, v) ∈ δkj + qA for u, v ∈ Sℓ (almost orthonomality),

(iii) ||eiu||2 ∈ q−2⟨hi,wt(uk)⟩−1A for u ∈ Sℓ and i ∈ I0.

As explained above, the assertion (i) holds

(since we constructed Sℓ so that this is satisfied).

Hence it remains to prove the assertions (ii) and (iii).

◦ calculate (u, v) and ||eiu||2 directly?

⇐ difficult since the amount of calculation is too enormous

idea

Use the theory of global bases in extremal weight modules!
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Basic notions Criterion for ∃cry. p.base Proof Future work

extremal weight modules

affine weight µ ∈ P ⇝ extremal weight module V (µ) [Kashiwara, 94]

(Uq(g)-mod. with a generator vµ of weight µ and certain defining rel.)

Note µ: positive (resp. negative) level ⇝ V (µ): h.w (resp. l.w) mod.

If µ is of level 0, V (µ) is neither of them.

Theorem (Kashiwara, 94)

V (µ) has a crystal base
(
L(V (µ)), B(V (µ))

)
and a global basis

{G(b) | b ∈ B(V (µ))}.

Theorem (Beck-Nakajima, 04)

V (µ) has a prepolarization ( , ), and we have (G(b), G(b′)) ∈ δbb′ + qA.
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Basic notions Criterion for ∃cry. p.base Proof Future work

We will give a sketch of the proof for the almost orthonormality:

(eawℓ, e
a′
wℓ) ∈ δaa′ + qA (eawℓ, e

a′
wℓ ∈ Sℓ).

Lemma

(eawℓ, e
a′
wℓ) = 0 if a ̸= a′.

Hence it suffices to show that ||eawℓ||2 ∈ 1 + qA if eawℓ ∈ Sℓ.

Lemma

eavℓϖ2 ∈ V (ℓϖ2) belongs to the global basis of V (ℓϖ2).

pf.) First prove that eav−3ℓΛ0 ∈ gl. basis of V (−3ℓΛ0)

⇒ vℓΛ2 ⊗ eau−3ℓΛ0 ∈ gl. basis of V (ℓΛ2)⊗ V (−3ℓΛ0) [Lusztig]

Fact ∃hom. V (ℓΛ2)⊗ V (−3ℓΛ0)↠ V (ℓϖ2) preserving global bases.

(note that ℓϖ2 = ℓΛ2 − 3ℓΛ0.)

Cor. ||eavℓϖ2 ||2 ∈ 1 + qA by the previous theorem.
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Lemma

||eavℓϖ2 ||2 (in V (ℓϖ2)) = ||ea(w1)
⊗ℓ||2 (in

(
W 2,1

)⊗ℓ
).

pf.) (i) ∃inj. hom. V (ℓϖ2) ↪→ V (ϖ2)
⊗ℓ [Nakajima].

(ii) V (ϖ2) ∼= Q[z, z−1]⊗W 2,1 ⇒ ∃hom. V (ϖ2)
(z=1)
↠ W 2,1.

Check V (ℓϖ2) ↪→ V (ϖ2)
⊗ℓ

(z=1)⊗ℓ

↠
(
W 2,1

)⊗ℓ
preserves ||ea ∗ ||2.

By combining this with the previous corollary, we have

||ea(w1)
⊗ℓ||2 ∈ 1 + qA, and hence it suffices to show the following:

Lemma

||ea(w1)
⊗ℓ||2 (in (W 2,1)⊗ℓ) = ||eawℓ||2 (in W 2,ℓ).

For simplicity, assume ℓ = 2.
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pf of ||ea(w1)
⊗2||2 (in (W 2,1)⊗2) = ||eaw2||2 (in W 2,2)

||ea(w1)
⊗2||2 = ||

∑
b q

c(b)ea−bw1 ⊗ ebw1||2

=
∑

b,b′ q
c(b)+c(b′)(ea−bw1, e

a−b′w1)(e
bw1, e

b′w1)

=
∑

b q
2c(b)||ea−bw1||2||ebw1||2 (∵ (ebw1, e

b′w1) = 0 unless b = b′)

recall
(
R(u), R(v)

)
=

(
u,R(v)

)′
, where R : W 2

q ⊗W 2
q−1

R→W 2
q−1 ⊗W 2

q .

||eaw2||2 = (ea(w1)
⊗2, ea(w1)

⊗2)′
(
on (W 2

q ⊗W 2
q−1)× (W 2

q−1 ⊗W 2
q )
)

=
(∑

b q
c(b)+d(b)ea−bw1 ⊗ ebw1,

∑
b′ q

c(b′)−d(b′)ea−b′w1 ⊗ eb
′
w1

)′

=
∑

b q
2c(b)||ea−bw1||2||ebw1||2.

pf of ||eiu||2 ∈ q−2⟨hi,wt(u)⟩−1A is in a similar spirit.
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c(b)+c(b′)(ea−bw1, e

a−b′w1)(e
bw1, e

b′w1)

=
∑

b q
2c(b)||ea−bw1||2||ebw1||2 (∵ (ebw1, e

b′w1) = 0 unless b = b′)

recall
(
R(u), R(v)

)
=

(
u,R(v)

)′
, where R : W 2

q ⊗W 2
q−1

R→W 2
q−1 ⊗W 2

q .

||eaw2||2 = (ea(w1)
⊗2, ea(w1)

⊗2)′
(
on (W 2

q ⊗W 2
q−1)× (W 2

q−1 ⊗W 2
q )
)

=
(∑

b q
c(b)+d(b)ea−bw1 ⊗ ebw1,

∑
b′ q

c(b′)−d(b′)ea−b′w1 ⊗ eb
′
w1

)′

=
∑

b q
2c(b)||ea−bw1||2||ebw1||2.

pf of ||eiu||2 ∈ q−2⟨hi,wt(u)⟩−1A is in a similar spirit.
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Future work: remaining cases

E
(1)
7 : ◦
◦
0
◦ ◦ • • ◦ ◦

E
(1)
8 : •

◦
0
◦ ◦ • • • • ◦

E
(2)
6 : ◦

0
◦ ◦ ks • ◦ F

(1)
4 : ◦

0
◦ ◦ +3• ◦

In these cases the fermionic formula is quite complicated

⇝ no explicit, closed formula for dec. W r,ℓ ∼=
⊕

V0

(
wt(u)

)
so far.

Hence it is difficult to find the vectors {uk} in the criterion.

∃algorithm: (dec. of W r,ℓ) → (dec. of W r,ℓ+1) (Kleber algorithm)

Q. Can we find an algorithm:

(vectors of W r,ℓ in the criterion) → (vectors of W r,ℓ+1 in the criterion)

corresponding to the Kleber algorithm?
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