Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	oo	00000000	0

Existence of Kirillov–Reshetikhin crystals for the near adjoint nodes in exceptional types

Katsuyuki Naoi (joint work with Travis Scrimshaw)

Tokyo University of Agriculture and Technology

Representation Theory of Algebraic Groups and Quantum Groups – in honor of Professor Ariki's 60th birthday –

October 21, 2019

Introduction			
Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	00	00000000	O

g: affine Lie algebra/ \mathbb{Q} without a degree op. d, (e.g. $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{Q}[t, t^{-1}] \oplus \mathbb{Q}K$, \mathfrak{g}_0 : simple Lie alg.) $I = \{0, 1, \dots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g} ,

Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
0000000	oo	00000000	O
Introduction			

g: affine Lie algebra/ \mathbb{Q} without a degree op. d, (e.g. $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{Q}[t, t^{-1}] \oplus \mathbb{Q}K$, \mathfrak{g}_0 : simple Lie alg.) $I = \{0, 1, \ldots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g} , $U'_q(\mathfrak{g}) = \mathbb{Q}(q)\langle e_i, f_i, q^{h_i} \mid i \in I \rangle$: quantum affine algebra (associative $\mathbb{Q}(q)$ -alg. defined as a q-deformation of $U(\mathfrak{g})$)

Introduction			
Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
0000000	00	00000000	O

g: affine Lie algebra/ \mathbb{Q} without a degree op. d, (e.g. $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{Q}[t, t^{-1}] \oplus \mathbb{Q}K$, \mathfrak{g}_0 : simple Lie alg.) $I = \{0, 1, \ldots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g} , $U'_q(\mathfrak{g}) = \mathbb{Q}(q)\langle e_i, f_i, q^{h_i} \mid i \in I \rangle$: **quantum affine algebra** (associative $\mathbb{Q}(q)$ -alg. defined as a q-deformation of $U(\mathfrak{g})$)

Some of f.d. simple $U'_q(\mathfrak{g})$ -modules have **crystal bases**, but not all of them do!

<u>Problem</u> Classify f.d. simple $U'_{a}(\mathfrak{g})$ -modules having crystal bases.

Introduction			
Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
0000000	00	00000000	O

g: affine Lie algebra/ \mathbb{Q} without a degree op. d, (e.g. $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{Q}[t, t^{-1}] \oplus \mathbb{Q}K$, \mathfrak{g}_0 : simple Lie alg.) $I = \{0, 1, \dots, n\}$: set of nodes of the Dynkin diag. of \mathfrak{g} , $U'_q(\mathfrak{g}) = \mathbb{Q}(q) \langle e_i, f_i, q^{h_i} \mid i \in I \rangle$: quantum affine algebra

(associative $\mathbb{Q}(q)$ -alg. defined as a q-deformation of $U(\mathfrak{g})$)

Some of f.d. simple $U_q'(\mathfrak{g})$ -modules have **crystal bases**, but not all of them do!

<u>Problem</u> Classify f.d. simple $U'_{a}(\mathfrak{g})$ -modules having crystal bases.

Conjecture (Hatayama, Kuniba, Okado, Takgagi, Yamada/Tsuboi, 99-01) Kirillov-Reshetikhin (KR) module $W^{r,\ell}$ has a crystal base.

KR mod. $W^{r,\ell}$: a family of f.d. simple $U_q'(\mathfrak{g})$ -mod $(r \in I \setminus \{0\}, \ell \in \mathbb{Z}_{>0})$

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	oo	oooooooo	0

Conjecture

Kirillov-Reshetikhin (KR) module $W^{r,\ell}$ has a crystal base.

Except (1), a slightly weak version is proved (\exists a crystal pseudobase)

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work O
Conjecture			
Conjecture			
Kirillov-Reshe	etikhin (KR) module W ^{r,e} f	has a crystal base.	
Theorem			
The conjectu	re holds for $W^{r,\ell}$ if		
(1) $\ell = 1$ [H	Kashiwara, 02]		

Except (1), a slightly weak version is proved (\exists a crystal pseudobase)

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work O
Conjecture			
Kirillov-Reshe	tikhin (KR) module $W^{r,\ell}$ ł	nas a crystal base.	
Theorem			
The conjectur	re holds for $W^{r,\ell}$ if		
(1) $\ell = 1$ [k	(ashiwara, 02]		
(2) g: nonex	ceptional type ($A_n^{(1,2)}$, $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1,2)}$) [Okado–	Schilling, 08]

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work O
Conjecture			
Kirillov-Resh	etikhin (KR) module $W^{r,\ell}$ l	nas a crystal base.	
Theorem			
The conjectu	re holds for $W^{r,\ell}$ if		
(1) $\ell = 1$ [I	Kashiwara, 02]		
(2) g: none	ceptional type $(A_n^{(1,2)},B_n^{(1)})$, $C_n^{(1)}$, $D_n^{(1,2)}$) [Okado–	Schilling, 08]
(3) g: type	$G_2^{(1)}$, $D_4^{(3)}$ [N, 18]		

B	asic notions 000000	Criterion for [∃] cry. p.base oo	Proof 00000000	Future work O
	Conjecture			
	Kirillov-Reshetikhir	n (KR) module $W^{r,\ell}$	has a crystal base.	

Theorem

The conjecture holds for $W^{r,\ell}$ if

- (1) $\ell = 1$ [Kashiwara, 02]
- (2) g: nonexceptional type $(A_n^{(1,2)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1,2)})$ [Okado-Schilling, 08] (3) g: type $G_2^{(1)}, D_4^{(3)}$ [N, 18]
- (4) $W^{r,\ell}$ is multiplicity free as a $U_q(\mathfrak{g}_0)$ -module [Biswal–Scrimshaw, 19]

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work o
Conjecture			
Kirillov-Reshe	etikhin (KR) module $W^{r,\ell}$	has a crystal base.	
I heorem			
The conjectu	re holds for $W^{r,\ell}$ if		
(1) $\ell = 1$ [H	Kashiwara, 02]		
(2) g: none>	ceptional type ($A_n^{(1,2)}$, $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1,2)}$) [Okado–	Schilling, 08]
(3) g: type	$G_2^{(1)}$, $D_4^{(3)}$ [N, 18]		
(4) $W^{r,\ell}$ is r	multiplicity free as a $U_q(\mathfrak{g}_0)$)-module [Biswal–Scri	mshaw, 19]
(5) <i>r</i> : near	adjoint node in types $E_{6,7}^{(1)}$	$F_{7,8}^{()}, \ F_4^{(1)}, \ E_6^{(2)} \Leftarrow Tod$	ау
0—— 0 0 adjoir	−−−	agram of \mathfrak{g}	

adjoint near adjoint

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work O
Conjecture			
Kirillov-Resh	etikhin (KR) module $W^{r,\ell}$ ł	nas a crystal base.	
Theorem			
The conjectu	re holds for $W^{r,\ell}$ if		
(1) $\ell = 1$ [Kashiwara, 02]		
(2) a: nonex	ceptional type $(A_n^{(1,2)}, B_n^{(1)})$	$(C_n^{(1)}, D_n^{(1,2)})$ [Okado-	-Schilling, 08]

(3)
$$\mathfrak{g}$$
: type $G_2^{(1)}$, $D_4^{(3)}$ [N, 18]

(4) $W^{r,\ell}$ is multiplicity free as a $U_q(\mathfrak{g}_0)$ -module [Biswal–Scrimshaw, 19]

(5) r: near adjoint node in types $E_{6,7,8}^{(1)}$, $F_4^{(1)}$, $E_6^{(2)} \Leftarrow \mathsf{Today}$

Except (1), a slightly weak version is proved (\exists a crystal pseudobase).

Summary:	Status of the conject	ure	
Basic notions	Criterion for [⊣] cry. p.base	Proof	Future work
0000000	00	00000000	O

exceptional types

Conj. has been proved for $W^{r,\ell}$ $(\ell \in \mathbb{Z}_{>0})$ with $r = \bullet$ (previous results)

<u>Rem.</u> In all types, the local diagrams are the same:

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	oo	00000000	O
Plan			

- Crystal bases and pseudobases
- KR modules
- Prepolarization
- ② Criterion for the existence of a crystal pseudobase

by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]

In Proof

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	00	00000000	O
Plan			

- Crystal bases and pseudobases
- KR modules
- Prepolarization
- Oriterion for the existence of a crystal pseudobase

by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]

In Proof

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	oo	00000000	O
Plan			

- Crystal bases and pseudobases
- KR modules
- Prepolarization
- ② Criterion for the existence of a crystal pseudobase

by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]

O Proof

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	oo	00000000	O
Plan			

- Crystal bases and pseudobases
- KR modules
- Prepolarization
- ② Criterion for the existence of a crystal pseudobase

by [Kang-Kashiwara-Misra-Miwa-Nakashima-Nakayashiki, 92]

In Proof

crystal hase a	nd nseudobase		
Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
•000000	00	00000000	O

- \mathfrak{g} : affine Lie algebra with index set $I = \{0, \ldots, n\}$,
- $U_q'(\mathfrak{g})$: quantum affine algebra without degree operator q^d (associative $\mathbb{Q}(q)$ -algebra generated by e_i, f_i, q^{h_i} $(i \in I)$),

crystal base and	nseudohase		
Basic notions	OO	Proof	Future work
●000000		00000000	O

- \mathfrak{g} : affine Lie algebra with index set $I = \{0, \dots, n\}$,
- $U_q'(\mathfrak{g})$: quantum affine algebra without degree operator q^d (associative $\mathbb{Q}(q)$ -algebra generated by e_i, f_i, q^{h_i} $(i \in I)$),

M: integrable $U_q'(\mathfrak{g})\text{-module},$

 $e_i, f_i \curvearrowright M$ $(i \in I) \stackrel{\text{"twist"}}{\leadsto} \tilde{e}_i, \tilde{f}_i \curvearrowright M$ $(i \in I)$: Kashiwara operators

Basic notions 0●00000	Criterion for [∃] cry. p.base ○○	Proof 00000000	Future work O
Definition			
(1) A pair $(L$	(B,B) is called a crystal bas	se if	
(a) L: A	-lattice of M ($A := \{f/g \mid$	$g(0) \neq 0\} \subseteq \mathbb{Q}(q)$: lo	ocal subring),
(b) <i>B</i> ⊆	L/qL : a $\mathbb Q$ -basis,		
(c) L =	$\bigoplus_{\lambda} L_{\lambda}, B = \bigsqcup_{\lambda} B_{\lambda}$ (i.e. o	compatible with weigh	ıt dec.),
(d) $\tilde{e}_i L$,	$\tilde{f}_i L \subseteq L \ (\Rightarrow \tilde{e}_i, \tilde{f}_i \frown L/q)$	L),	
(e) $\tilde{e}_i b, f$	$\widetilde{b}_i b \in B \sqcup \{0\}$ for $b \in B$,		
(f) $\tilde{e}_i b =$	$b' \Leftrightarrow b = \tilde{f}_i b' \text{ for } b, b' \in B$		

Basic notions 0●00000	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work O
Definition			
Definition			
(1) A pair (L, R)	B) is called a crystal bas	e if	
(a) L: A-la	ttice of M ($A:=\{f/g\mid$	$g(0) \neq 0\} \subseteq \mathbb{Q}(q)$: Id	ocal subring),
(b) $B \subseteq L_{/}$	${}^{\prime}qL$: a ${\mathbb Q}$ -basis,		
(c) $L = \bigoplus$	$_{\lambda} L_{\lambda}, B = \bigsqcup_{\lambda} B_{\lambda}$ (i.e. c	compatible with weigh	nt dec.),
(d) $\tilde{e}_i L, \tilde{f}_i I$	$L \subseteq L \ (\Rightarrow \tilde{e}_i, \tilde{f}_i \frown L/qL)$	Ĺ),	
(e) $\tilde{e}_i b, \tilde{f}_i b$	$\in B \sqcup \{0\}$ for $b \in B$,		
(f) $\tilde{e}_i b = b^i$	$\dot{\phi} \phi b = \tilde{f}_i b' \text{ for } b, b' \in B$		
(2) A pair (L, R)	B) is called a crystal pse	udobase if (a), (c)-((f) and
(b') $\exists B' ⊆$	L/qL : a \mathbb{Q} -basis s.t. B	$= B' \sqcup -B'.$	

Basic notions 0●00000	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work O
Definition			
(1) A pair $(L$	(B) is called a crystal bas	e if	
(a) L: A-	lattice of M ($A := \{f/g \mid$	$g(0) \neq 0\} \subseteq \mathbb{Q}(q)$: I	ocal subring),
(b) $B \subseteq A$	L/qL : a $\mathbb Q$ -basis,		
(c) $L = 6$	$\bigoplus_{\lambda} L_{\lambda}, B = \bigsqcup_{\lambda} B_{\lambda}$ (i.e. c	ompatible with weigl	nt dec.),
(d) $\tilde{e}_i L, f$	$ ilde{f}_i L \subseteq L \;\; (\Rightarrow ilde{e}_i, ilde{f}_i \frown L/qL)$.),	
(e) $\tilde{e}_i b, \tilde{f}_i$	$b\in B\sqcup\{0\}$ for $b\in B$,		
(f) $\tilde{e}_i b =$	$b' \Leftrightarrow b = \tilde{f}_i b' \text{ for } b, b' \in B$		
(2) A pair $(L$	(B) is called a crystal pse	udobase if (a), (c)-	(f) and
(b') ∃B′	$\subseteq L/qL$: a $\mathbb Q$ -basis s.t. B :	$= B' \sqcup -B'.$	
Rem. In the	same way with crystal base	s, from a crystal pse	udobase
we can constr	uct a crystal graph (I-col	ored oriented graph)	

 \rightsquigarrow combinatorial formulas for tensor products, branching rules, etc.

 Basic notions oceoooo
 Criterion for ³ cry. p.base oc
 Proof ocooocooo
 Future work oc

 Kirillov-Reshetikhin (KR) modules

$$U_q'(\mathfrak{g}) \supseteq U_q(\mathfrak{g}_0) := \mathbb{Q}(q) \langle e_i, f_i, q^{h_i} \mid i \in I_0 := I \setminus \{0\} \rangle$$

 P_0 : weight lattice of \mathfrak{g}_0 , P_0^+ : set of dominant integral weights of \mathfrak{g}_0 ,

 $\varpi_i \in P_0^+$ $(i \in I_0)$: fundamental weight of \mathfrak{g}_0 (i.e. $\langle h_i, \varpi_j \rangle = \delta_{ij}$)

 Basic notions oo•oooo
 Criterion for ³ cry. p.base oo
 Proof oocoooooo
 Future work o

 Kirillov-Reshetikhin (KR) modules

$$U_q'(\mathfrak{g}) \supseteq U_q(\mathfrak{g}_0) := \mathbb{Q}(q) \langle e_i, f_i, q^{h_i} \mid i \in I_0 := I \setminus \{0\} \rangle$$

$$\chi_0(\lambda)$$
 λ

Basic notions	Criterion for [±] cry. p.base	Proof	Future work
000000			

W^r $(r \in I_0)$: fundamental module defined by [Kashiwara, 02]

(f.d. simple $U'_{q}(\mathfrak{g})$ -module having a crystal base with highest weight ϖ_{r})

 Basic notions
 Criterion for [∃]cry. p.base
 Proof
 Future work

 0000000
 00
 00000000
 0

 $W^r \ (r \in I_0)$: fundamental module defined by [Kashiwara, 02]

(f.d. simple $U_q'(\mathfrak{g})$ -module having a crystal base with highest weight ϖ_r)

For $r \in I_0$ and $k \in \mathbb{Z}$, define a $U'_q(\mathfrak{g})$ -module $W^r_{q^k}$ as follows: $W^r_{q^k} = W^r$ as vector sp., and denoting by ρ the new action, we have $\rho(e_i)v = q^{\delta_{0i}k}e_iv, \ \rho(f_i)v = q^{-\delta_{0i}k}f_iv, \ \rho(q^{h_i})v = q^{h_i}v.$
 Basic notions
 Criterion for ∃cry. p.base
 Proof
 Future work

 0000000
 00
 0000000
 0

 W^r $(r \in I_0)$: fundamental module defined by [Kashiwara, 02] (f.d. circula U'(z) module begins a spectal base with highest weight

(f.d. simple $U_q'(\mathfrak{g})$ -module having a crystal base with highest weight $arpi_r)$

For $r \in I_0$ and $k \in \mathbb{Z}$, define a $U'_q(\mathfrak{g})$ -module $W^r_{q^k}$ as follows: $W^r_{q^k} = W^r$ as vector sp., and denoting by ρ the new action, we have $\rho(e_i)v = q^{\delta_{0i}k}e_iv$, $\rho(f_i)v = q^{-\delta_{0i}k}f_iv$, $\rho(q^{h_i})v = q^{h_i}v$.

For $r \in I_0$ and $\ell \in \mathbb{Z}_{>0}$, consider a nontrivial $U'_q(\mathfrak{g})$ -module hom. $W^r_{q^{\ell-1}} \otimes W^r_{q^{\ell-3}} \otimes \cdots \otimes W^r_{q^{-\ell+1}} \xrightarrow{R} W^r_{q^{-\ell+1}} \otimes \cdots \otimes W^r_{q^{\ell-3}} \otimes W^r_{q^{\ell-1}}.$

Definition

 $W^{r,\ell} := \operatorname{Im} R$: Kirillov-Reshetikhin (KR) modules

<u>Note</u> $W^{r,1} = W^r$.

Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
0000000	00	00000000	O
Main Theorem			

Theorem (N–Scrimshaw)

If \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$, $F_4^{(1)}$ or $E_6^{(2)}$ and r is near adjoint, then the KR module $W^{r,\ell}$ has a crystal pseudobase for every ℓ .

Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
0000000	00	00000000	O
Main Theorem			

Theorem (N–Scrimshaw)

If \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$, $F_4^{(1)}$ or $E_6^{(2)}$ and r is near adjoint, then the KR module $W^{r,\ell}$ has a crystal pseudobase for every ℓ .

In the proof, we use a **criterion** introduced by [KKMMNN]: (³crystal pseudobase) \Leftarrow statements on a **prepolarization** (,)

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
00000●0	oo	00000000	O
prepolarization			

Define an anti-involution Ψ of $U_q'(\mathfrak{g})$ by

$$\Psi(e_i) = q_i^{-1} q_i^{-h_i} f_i, \quad \Psi(f_i) = q_i^{-1} q_i^{h_i} e_i, \quad \Psi(q^{h_i}) = q^{h_i},$$

where $q_i = q^{c_i}$ with a certain positive integer c_i .

Definition

Let M be a $U'_q(\mathfrak{g})$ -module, and (,) a $\mathbb{Q}(q)$ -bilinear form on M. We say (,) is a **prepolarization** on M if it is symmetric and satisfies $(xu, v) = (u, \Psi(x)v)$ for $x \in U'_q(\mathfrak{g})$ and $u, v \in M$.

In this talk, we often use the notation $||u||^2 = (u, u)$.

B	asic notions 00000●	Criterion for [∃] cry. p.base oo	Proof 00000000	Future work O
	Proposition			
$W^{r,\ell}$ has a prepolarization $(\ ,\).$				

Construction of this prepolarization

<u>Recall</u> $W^{r,\ell} := \operatorname{Im} R$, where $W^r_{q^{\ell-1}} \otimes \cdots \otimes W^r_{q^{-\ell+1}} \xrightarrow{R} W^r_{q^{-\ell+1}} \otimes \cdots \otimes W^r_{q^{\ell-1}}$

Basic notions	Criterion for [⊣] cry. p.base 00	Proof 00000000	Future work O
Proposition			
$W^{r,\ell}$ has a prepo	larization (,).		

Construction of this prepolarization

 $\begin{array}{ll} \underline{\operatorname{Recall}} & W^{r,\ell} := \operatorname{Im} R, \text{ where} \\ W^r_{q^{\ell-1}} \otimes \cdots \otimes W^r_{q^{-\ell+1}} \xrightarrow{R} W^r_{q^{-\ell+1}} \otimes \cdots \otimes W^r_{q^{\ell-1}} \end{array}$

<u>Fact</u> W^r has a prepolarization (,).

Basic notions 000000●	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work O
Proposition			
$W^{r,\ell}$ has a provide the second s	epolarization $(\ , \).$		
Construction	of this prepolarization		
$\frac{\text{Recall}}{W_{q^{\ell-1}}^r \otimes \cdots \otimes}$	$= \operatorname{Im} R, \text{ where}$ $= W_{q^{-\ell+1}}^r \xrightarrow{R} W_{q^{-\ell+1}}^r \otimes \cdots \otimes$	$\otimes W^r_{q^{\ell-1}}$	
<u>Fact</u> W^r has	a prepolarization $(\ ,\).$		
\rightsquigarrow natural pai	ring $(\ ,\)$ between $W^r_{q^k}$ an	d $W^r_{q^{-k}}$ for any $k\in\mathbb{Z}$	Z.

 $\stackrel{\rightsquigarrow}{\longrightarrow} (u_1 \otimes \cdots \otimes u_{\ell}, v_1 \otimes \cdots \otimes v_{\ell})' = (u_1, v_1) \cdots (u_{\ell}, v_{\ell}) \text{ defines a pairing}$ between $W_{q^{\ell-1}}^r \otimes \cdots \otimes W_{q^{-\ell+1}}^r$ and $W_{q^{-\ell+1}}^r \otimes \cdots \otimes W_{q^{\ell-1}}^r$.

Basic notions 000000●	Criterion for [∃] cry. p.base 00	Proof 00000000	Future work o
Proposition			
$W^{r,\ell}$ has a p	repolarization $(,)$.		
Construction	n of this prepolarization		
<u>Recall</u> $W^{r,\ell} := \operatorname{Im} R$, where $W^r_{q^{\ell-1}} \otimes \cdots \otimes W^r_{q^{-\ell+1}} \xrightarrow{R} W^r_{q^{-\ell+1}} \otimes \cdots \otimes W^r_{q^{\ell-1}}$			
<u>Fact</u> W^r ha	s a prepolarization $(\ ,\).$		
\rightsquigarrow natural pairing $(\;,\;)$ between $W^r_{q^k}$ and $W^r_{q^{-k}}$ for any $k\in\mathbb{Z}.$			
$\rightsquigarrow (u_1 \otimes \cdots \otimes u_\ell, v_1 \otimes \cdots \otimes v_\ell)' = (u_1, v_1) \cdots (u_\ell, v_\ell)$ defines a pairing			
betweer	$W^r_{q^{\ell-1}}\otimes \cdots \otimes W^r_{q^{-\ell+1}}$ and	$W^r_{q^{-\ell+1}}\otimes\cdots\otimes W^r_{q^{\ell+1}}$	-1·

Then (R(u), R(v)) := (u, R(v))' for $u, v \in W^r_{q^{\ell-1}} \otimes \cdots \otimes W^r_{q^{-\ell+1}}$
Basic notions 0000000	Criterion for [∃] cry. p.base ●0	Proof 00000000	Future work O
Criterion for	r the existence of cry	stal pseudobase	
Theorem (KK	MMNN)		
Let M be a f.	d. $U_q'(\mathfrak{g})$ -module, and assu	ime that	
(1) M has a	prepolarization $(,)$,		
(2) [∃] "suitabl	e \mathbb{Z} -form" $M_{\mathbb{Z}}$ in M ,		

(3) there exists a set of vectors $S = \{u_1, \dots, u_m\} \subseteq M_{\mathbb{Z}}$ s.t. (i) $M \cong_{U_q(\mathfrak{g}_0)} \bigoplus_{k=1}^m V_0(\mathrm{wt}(u_k)),$ (ii) $(u_k, u_j) \in \delta_{kj} + qA \quad (\forall k, j)$ (almost orthonomality) (iii) $||e_i u_k||^2 \in q_i^{-2\langle h_i, \mathrm{wt}(u_k) \rangle - 1}A \quad (\forall i \in I_0, \forall k).$

Then, setting

$$\begin{split} L := \{ u \in M \mid ||u||^2 \in A \}, \ B := \{ b \in (M_{\mathbb{Z}} \cap L)/(M_{\mathbb{Z}} \cap qL) \mid ||b||^2 = 1 \}, \\ (L,B) \text{ is a crystal pseudobase of } M. \end{split}$$

Basic notions 0000000	Criterion for [∃] cry. p.base ●○	Proof 00000000	Future work o
Criterion for	the existence of crys	stal pseudobase	
Theorem (KKI	MMNN)		

Let M be a f.d. $U_q'(\mathfrak{g})\text{-module,}$ and assume that

- (1) M has a prepolarization (,),
- (2) \exists "suitable \mathbb{Z} -form" $M_{\mathbb{Z}}$ in M,
- (3) there exists a set of vectors $S = \{u_1, \dots, u_m\} \subseteq M_{\mathbb{Z}}$ s.t. (i) $M \cong u \in Q^m$ $V_2(\operatorname{wrt}(u_1))$

(i)
$$|u_{k}-U_{q}(\mathfrak{g}_{0}) \oplus U_{k=1} \vee 0 (\mathbb{W}(u_{k})),$$

(ii) $(u_{k}, u_{j}) \in \delta_{kj} + qA \quad (\forall k, j)$ (almost orthonomality)
(iii) $||e_{i}u_{k}||^{2} \in q_{i}^{-2\langle h_{i}, \mathbb{W}(u_{k}) \rangle - 1}A \quad (\forall i \in I_{0}, \forall k).$

Then, setting

$$\begin{split} L &:= \{ u \in M \mid ||u||^2 \in A \}, \ B := \{ b \in (M_{\mathbb{Z}} \cap L)/(M_{\mathbb{Z}} \cap qL) \mid ||b||^2 = 1 \}, \\ (L,B) \text{ is a crystal pseudobase of } M. \end{split}$$

<u>Note</u> (ii) $\Rightarrow b_k := \overline{u_k} \in B$, (iii) $\Rightarrow \tilde{e}_i b_k = 0$ ($i \in I_0$).

So (i)–(iii) imply that there exist enough $U_q(\mathfrak{g}_0)$ -h.w. elements in B.

(1) and (2) are known to hold for all the KR modules $W^{r,\ell}$.

Basic notions Criterion for ³ cry. p.base Proof Society of Socie

(1) and (2) are known to hold for all the KR modules $W^{r,\ell}$. Hence what we have to do is the following:

(a) Find a suitable set $S_{\ell} = \{u_1, \ldots, u_m\} \subseteq W^{r,\ell}$,

(b) Check that these vectors satisfy (i), (ii) and (iii).

Droof of the	main theorem		
Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	00	●00000000	O

Theorem (N–Scrimshaw)

If
$$\mathfrak{g}$$
 is either of type $E_{6,7,8}^{(1)}$, $F_4^{(1)}$ or $E_6^{(2)}$ and r is near adjoint,
then the KR module $W^{r,\ell}$ has a crystal pseudobase for every ℓ .

Droof of the	main theorem		
Basic notions	Criterion for [–] cry. p.base	Proot	Future work
0000000	00	●00000000	O

Theorem (N–Scrimshaw)

If
$$\mathfrak{g}$$
 is either of type $E_{6,7,8}^{(1)}$, $F_4^{(1)}$ or $E_6^{(2)}$ and r is near adjoint, then the KR module $W^{r,\ell}$ has a crystal pseudobase for every ℓ .

In the sequel, assume that \mathfrak{g} is either of type $E_{6,7,8}^{(1)}$, $F_4^{(1)}$ or $E_6^{(2)}$, and the nodes are labelled as $\underbrace{\circ}_{0}$ $\underbrace{\circ}_{1}$ $\underbrace{\circ}_{2}$ (i.e., 2: near adjoint node) We have to

- (a) Find a suitable set $S_\ell = \{u_1, \dots, u_m\} \subseteq W^{2,\ell}$,
- (b) Check that these vectors satisfy (i) $W^{2,\ell} \cong \bigoplus V_0(\operatorname{wt}(u_k))$, (ii) $(u_k, u_i) \in \delta_{ki} + qA$ and (iii) $||e_i u_k||^2 \in q^{-2\langle h_i, \operatorname{wt}(u_k) \rangle - 1}A$.

Construction	of the set of vecto	re S. in the criter	ion
		00000000	
Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work

 $\begin{array}{ll} \underline{\text{Notation}} & [m] = (q^m - q^{-m})/(q - q^{-1}), & [m]! = [m] \cdots [1], \\ \\ \text{Set } e_i^{(m)} = e_i^m/[m]! \text{ for } i \in I \quad (q\text{-devided power}), \\ \\ w_\ell \in W_{\ell \varpi_2}^{2,\ell}: \text{ a highest weight vector s.t. } ||w_\ell||^2 = 1, \\ \\ \text{For a seq. } i_1, i_2, \ldots, i_p \text{ of elements of } I, \ e_{i_1,i_2,\ldots,i_p}^{(m)} := e_{i_1}^{(m)} e_{i_2}^{(m)} \cdots e_{i_p}^{(m)}. \end{array}$

Construction of	of the set of vectors S_ℓ	in the criterion	
Basic notions	Criterion for [–] cry. p.base	Proof	Future work
0000000	00	0●0000000	O

$$\begin{split} & \underline{\text{Notation}} \quad [m] = (q^m - q^{-m})/(q - q^{-1}), \quad [m]! = [m] \cdots [1], \\ & \text{Set } e_i^{(m)} = e_i^m / [m]! \text{ for } i \in I \quad (q\text{-devided power}), \\ & w_\ell \in W_{\ell \varpi_2}^{2,\ell}: \text{ a highest weight vector s.t. } ||w_\ell||^2 = 1, \\ & \text{For a seq. } i_1, i_2, \dots, i_p \text{ of elements of } I, \ e_{i_1,i_2,\dots,i_p}^{(m)} := e_{i_1}^{(m)} e_{i_2}^{(m)} \cdots e_{i_p}^{(m)}. \\ & \text{For } a = (a_1,\dots,a_6) \in \mathbb{Z}_{\geq 0}^6, \ e^a := e_0^{(a_6)} e_1^{(a_5)} e_2^{(a_4)} E_{\beta}^{(a_3)} E_{\alpha}^{(a_2)} e_{1,0}^{(a_1)}, \end{split}$$

where $E_{\alpha}^{(a)}\text{, }E_{\beta}^{(a)}$ are some prod. of $e_{i}^{(a)}\text{'s}\Leftarrow \text{defined in the next slide}$

Definition

For
$$\ell \in \mathbb{Z}_{>0}$$
, define a subset $S_{\ell} \subseteq W^{2,\ell}$ by
 $S_{\ell} := \{e^{a}w_{\ell} \mid a_{6} \le a_{5} \le a_{4} \le a_{3} \le a_{2}, a_{2} + a_{3} + a_{4} - a_{5} \le a_{1} \le a_{4} + \ell\}.$

Basic notions 0000000	Criterion for [∃] cry. p.base oo	Proof oo●oooooo	Future work O
Assume that $\mathfrak g$ is e	ither of type $E_{6,7,8}^{(1)}$.		
lpha: the highest roo	t of $I \setminus \{0,1\}$,		
$E_6^{(1)}: \circ$	$E_7^{(1)}: \underbrace{\circ}_{0} \\ \circ \\ \circ \\ 0 \\ 1 \\ \circ \\ \circ$	$E_8^{(1)}: \\ \circ \\ \circ \\ \circ \\ 0 \\ 1 \\ \circ \\ \circ$	-0

In types $F_4^{(1)}$, $E_6^{(2)}$, one defines $E_{\alpha}^{(m)}$, $E_{\beta}^{(m)}$ in a similar way.

^{\exists} combin. formula for dec. $W^{r,\ell} \cong_{U_q(\mathfrak{g}_0)} \bigoplus_{\lambda} V_0(\lambda)$ (fermionic formula)

[∃]combin. formula for dec. W^{r,ℓ} ≅_{Uq(𝔅₀)} ⊕_λ V₀(λ) (fermionic formula) → In near adjoint cases, more explicit formulas are obtained from this. ∴ Since W^{2,ℓ} ≅_{Uq(𝔅₀)} ⊕_k V₀(wt(u_k)) must hold, the weights of the vectors {u_k} ⊆ W^{2,ℓ} in the criterion are previously known.

^{\exists} combin. formula for dec. $W^{r,\ell} \cong_{U_a(\mathfrak{g}_0)} \bigoplus_{\lambda} V_0(\lambda)$ (fermionic formula) \rightsquigarrow In near adjoint cases, more explicit formulas are obtained from this. \therefore Since $W^{2,\ell} \cong_{U_q(\mathfrak{a}_0)} \bigoplus_k V_0(\operatorname{wt}(u_k))$ must hold, the weights of the vectors $\{u_k\} \subset W^{2,\ell}$ in the criterion are previously known. Observation In previous works (e.g., [Okado-Schilling]): vectors $\{u_k\}$ are written in the forms $e_{i_1}^{(a_1)} \cdots e_{i_n}^{(a_p)} w_\ell$ $(a_1, \ldots, a_p \in \mathbb{Z}_{>0}).$ Here $s_{i_1} \cdots s_{i_n}$: red. exp. of an el. $w \in W_{\text{aff}}$ s.t. $w(\varpi_r + \Lambda_0) \in P^+$ $(P^+: \text{ dom. int. wts of } \mathfrak{g}, \Lambda_0: \text{ fund. weight of } \mathfrak{g}).$

^{\exists}combin. formula for dec. $W^{r,\ell} \cong_{U_q(\mathfrak{a}_0)} \bigoplus_{\lambda} V_0(\lambda)$ (fermionic formula) \rightsquigarrow In near adjoint cases, more explicit formulas are obtained from this. \therefore Since $W^{2,\ell} \cong_{U_q(\mathfrak{g}_0)} \bigoplus_k V_0(\mathrm{wt}(u_k))$ must hold, the weights of the vectors $\{u_k\} \subseteq W^{2,\ell}$ in the criterion are previously known. Observation In previous works (e.g., [Okado-Schilling]): vectors $\{u_k\}$ are written in the forms $e_{i_1}^{(a_1)} \cdots e_{i_n}^{(a_p)} w_\ell$ $(a_1, \ldots, a_p \in \mathbb{Z}_{>0}).$ Here $s_{i_1} \cdots s_{i_n}$: red. exp. of an el. $w \in W_{\text{aff}}$ s.t. $w(\varpi_r + \Lambda_0) \in P^+$ $(P^+: \text{ dom. int. wts of } \mathfrak{g}, \Lambda_0: \text{ fund. weight of } \mathfrak{g}).$

By assuming this also holds in our cases,

the set of vectors $S_{\ell} = \{e_0^{(a_6)} e_1^{(a_5)} e_2^{(a_4)} E_{\beta}^{(a_3)} E_{\alpha}^{(a_2)} e_{1,0}^{(a_1)} w_{\ell} \mid \cdots \}$ was found.

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
		00000000	

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
		00000000	

As explained above, the assertion (i) holds

(since we constructed S_{ℓ} so that this is satisfied). Hence it remains to prove the assertions (ii) and (iii).

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	oo	oooo●oooo	0

As explained above, the assertion (i) holds

(since we constructed S_ℓ so that this is satisfied). Hence it remains to prove the assertions (ii) and (iii).

 \circ calculate (u, v) and $||e_i u||^2$ directly?

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
		00000000	

As explained above, the assertion (i) holds

(since we constructed S_{ℓ} so that this is satisfied). Hence it remains to prove the assertions (ii) and (iii).

 \circ calculate (u, v) and $||e_i u||^2$ directly?

 \Leftarrow difficult since the amount of calculation is too enormous

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
		00000000	

As explained above, the assertion (i) holds

(since we constructed S_{ℓ} so that this is satisfied). Hence it remains to prove the assertions (ii) and (iii).

 \circ calculate (u, v) and $||e_i u||^2$ directly?

 \Leftarrow difficult since the amount of calculation is too enormous

<u>idea</u>

Use the theory of global bases in extremal weight modules!

extremal wei	ght modules		
Basic notions	Criterion for [∃] cry. p.base	Proof	Future work
0000000	00	ooooo●ooo	O

affine weight $\mu \in P \rightsquigarrow$ extremal weight module $V(\mu)$ [Kashiwara, 94] ($U_q(\mathfrak{g})$ -mod. with a generator v_{μ} of weight μ and certain defining rel.)

o

<u>Note</u> μ : positive (resp. negative) level $\rightsquigarrow V(\mu)$: h.w (resp. l.w) mod. If μ is of level 0, $V(\mu)$ is neither of them.

Basic notions	Criterion for [⊣] cry. p.base	Proof	Future work
0000000	00	00000●000	0
extremal weight	modules		

affine weight $\mu \in P \rightsquigarrow$ extremal weight module $V(\mu)$ [Kashiwara, 94] ($U_q(\mathfrak{g})$ -mod. with a generator v_{μ} of weight μ and certain defining rel.)

<u>Note</u> μ : positive (resp. negative) level $\rightsquigarrow V(\mu)$: h.w (resp. l.w) mod. If μ is of level 0, $V(\mu)$ is neither of them.

Theorem (Kashiwara, 94)

 $V(\mu)$ has a crystal base $(L(V(\mu)), B(V(\mu)))$ and a global basis $\{G(b) \mid b \in B(V(\mu))\}.$

Basic notions	Criterion for [⊣] cry. p.base	Proof	Future work
0000000	00	00000●000	0
extremal weight	modules		

affine weight $\mu \in P \rightsquigarrow$ extremal weight module $V(\mu)$ [Kashiwara, 94] ($U_q(\mathfrak{g})$ -mod. with a generator v_{μ} of weight μ and certain defining rel.)

<u>Note</u> μ : positive (resp. negative) level $\rightsquigarrow V(\mu)$: h.w (resp. l.w) mod. If μ is of level 0, $V(\mu)$ is neither of them.

Theorem (Kashiwara, 94)

 $V(\mu)$ has a crystal base $(L(V(\mu)), B(V(\mu)))$ and a global basis $\{G(b) \mid b \in B(V(\mu))\}.$

Theorem (Beck-Nakajima, 04)

 $V(\mu)$ has a prepolarization $(\ ,\),$ and we have $(G(b),G(b'))\in \delta_{bb'}+qA.$

Basic notions	Criterion for [⊣] cry. p.base	Proof	Future work
		000000000	

 $(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) \in \delta_{\boldsymbol{aa'}} + qA \quad (e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell} \in S_{\ell}).$

Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
0000000	00	000000●00	0
We will give a sket	ch of the proof for the alm	ost orthonormality:	

 $(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) \in \delta_{\boldsymbol{a}\boldsymbol{a'}} + qA \quad (e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell} \in S_{\ell}).$

Lemma

$$(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) = 0$$
 if $\boldsymbol{a} \neq \boldsymbol{a'}$.

Hence it suffices to show that $||e^{a}w_{\ell}||^{2} \in 1 + qA$ if $e^{a}w_{\ell} \in S_{\ell}$.

Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
0000000	oo	000000000	0

 $(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) \in \delta_{\boldsymbol{aa'}} + qA \quad (e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell} \in S_{\ell}).$

Lemma

$$(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) = 0$$
 if $\boldsymbol{a} \neq \boldsymbol{a'}$.

Hence it suffices to show that $||e^{a}w_{\ell}||^{2} \in 1 + qA$ if $e^{a}w_{\ell} \in S_{\ell}$.

Lemma

 $e^{a}v_{\ell \varpi_{2}} \in V(\ell \varpi_{2})$ belongs to the global basis of $V(\ell \varpi_{2})$.

Basic notions	Criterion for ⊐cry. p.base	Proof	Future work
0000000		000000000	

 $(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) \in \delta_{\boldsymbol{aa'}} + qA \quad (e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell} \in S_{\ell}).$

Lemma

$$(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) = 0$$
 if $\boldsymbol{a} \neq \boldsymbol{a'}$.

Hence it suffices to show that $||e^{a}w_{\ell}||^{2} \in 1 + qA$ if $e^{a}w_{\ell} \in S_{\ell}$.

Lemma

 $e^{a}v_{\ell \varpi_{2}} \in V(\ell \varpi_{2})$ belongs to the global basis of $V(\ell \varpi_{2})$.

pf.) First prove that
$$e^{a}v_{-3\ell\Lambda_{0}} \in \text{gl.}$$
 basis of $V(-3\ell\Lambda_{0})$

Basic notions	Criterion for ⊐cry. p.base	Proof	Future work
		000000000	

 $(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) \in \delta_{\boldsymbol{aa'}} + qA \quad (e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell} \in S_{\ell}).$

Lemma

$$(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) = 0$$
 if $\boldsymbol{a} \neq \boldsymbol{a'}$.

Hence it suffices to show that $||e^{a}w_{\ell}||^{2} \in 1 + qA$ if $e^{a}w_{\ell} \in S_{\ell}$.

Lemma

 $e^{a}v_{\ell \varpi_{2}} \in V(\ell \varpi_{2})$ belongs to the global basis of $V(\ell \varpi_{2})$.

pf.) First prove that $e^{a}v_{-3\ell\Lambda_0} \in \text{gl.}$ basis of $V(-3\ell\Lambda_0)$

 $\Rightarrow v_{\ell\Lambda_2} \otimes e^{a} u_{-3\ell\Lambda_0} \in \mathsf{gl. basis of } V(\ell\Lambda_2) \otimes V(-3\ell\Lambda_0) \text{ [Lusztig]}$

Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
		000000000	

 $(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) \in \delta_{\boldsymbol{aa'}} + qA \quad (e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell} \in S_{\ell}).$

Lemma

$$(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) = 0$$
 if $\boldsymbol{a} \neq \boldsymbol{a'}$.

Hence it suffices to show that $||e^{a}w_{\ell}||^{2} \in 1 + qA$ if $e^{a}w_{\ell} \in S_{\ell}$.

Lemma

 $e^{a}v_{\ell \varpi_{2}} \in V(\ell \varpi_{2})$ belongs to the global basis of $V(\ell \varpi_{2})$.

pf.) First prove that
$$e^{a}v_{-3\ell\Lambda_0} \in gl.$$
 basis of $V(-3\ell\Lambda_0)$

 $\Rightarrow v_{\ell \Lambda_2} \otimes e^{a} u_{-3\ell \Lambda_0} \in \mathsf{gl.}$ basis of $V(\ell \Lambda_2) \otimes V(-3\ell \Lambda_0)$ [Lusztig]

<u>Fact</u> [∃]hom. $V(\ell\Lambda_2) \otimes V(-3\ell\Lambda_0) \twoheadrightarrow V(\ell\varpi_2)$ preserving global bases.

(note that $\ell arpi_2 = \ell \Lambda_2 - 3 \ell \Lambda_0$.)

Basic notions	Criterion for [⊐] cry. p.base	Proof	Future work
		000000000	

 $(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) \in \delta_{\boldsymbol{aa'}} + qA \quad (e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell} \in S_{\ell}).$

Lemma

$$(e^{\boldsymbol{a}}w_{\ell}, e^{\boldsymbol{a'}}w_{\ell}) = 0$$
 if $\boldsymbol{a} \neq \boldsymbol{a'}$.

Hence it suffices to show that $||e^{a}w_{\ell}||^{2} \in 1 + qA$ if $e^{a}w_{\ell} \in S_{\ell}$.

Lemma

 $e^{a}v_{\ell \varpi_{2}} \in V(\ell \varpi_{2})$ belongs to the global basis of $V(\ell \varpi_{2})$.

pf.) First prove that
$$e^{a}v_{-3\ell\Lambda_0} \in gl.$$
 basis of $V(-3\ell\Lambda_0)$

 $\Rightarrow v_{\ell\Lambda_2} \otimes e^{a} u_{-3\ell\Lambda_0} \in \mathsf{gl.}$ basis of $V(\ell\Lambda_2) \otimes V(-3\ell\Lambda_0)$ [Lusztig]

<u>Fact</u> [∃]hom. $V(\ell\Lambda_2) \otimes V(-3\ell\Lambda_0) \twoheadrightarrow V(\ell\varpi_2)$ preserving global bases.

(note that
$$\ell \varpi_2 = \ell \Lambda_2 - 3 \ell \Lambda_0$$
.)

<u>Cor.</u> $||e^{a}v_{\ell \varpi_{2}}||^{2} \in 1 + qA$ by the previous theorem.

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof oooooooooo	Future work O
Lemma			
$ e^{oldsymbol{a}}v_{\ellarpi_2} ^2$ (i	n $V(\ell \varpi_2)$) = $ e^{\boldsymbol{a}}(w_1)^{\otimes \ell} ^2$	(in $\left(W^{2,1} ight)^{\otimes \ell}$).	

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof ooooooo●o	Future work O
Lemma			
$ e^{oldsymbol{a}}v_{\ellarpi_2} ^2$ (in	n $V(\ell \varpi_2)$) = $ e^{\boldsymbol{a}}(w_1)^{\otimes \ell} ^2$	(in $\left(W^{2,1}\right)^{\otimes \ell}$).	
pf.) (i) [∃] inj. I	nom. $V(\ell \varpi_2) \hookrightarrow V(\varpi_2)^{\otimes \ell}$	[Nakajima].	

(ii) $V(\varpi_2) \cong \mathbb{Q}[z, z^{-1}] \otimes W^{2,1} \Rightarrow \exists \mathsf{hom.} V(\varpi_2) \overset{(z=1)}{\twoheadrightarrow} W^{2,1}.$

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof 0000000●0	Future work O
Lemma			
$ e^{oldsymbol{a}}v_{\ellarpi_2} ^2$ (in	$N V(\ell \varpi_2)) = e^{\boldsymbol{a}}(w_1)^{\otimes \ell} ^2$	(in $\left(W^{2,1}\right)^{\otimes \ell}$).	
pf.) (i) [∃] inj. ł	nom. $V(\ell \varpi_2) \hookrightarrow V(\varpi_2)^{\otimes \ell}$	[Nakajima].	
(ii) $V(\varpi_2) \cong$	$\mathbb{Q}[z,z^{-1}]\otimes W^{2,1}\Rightarrow \exists hom$	$V(\varpi_2) \xrightarrow{(z=1)}{\twoheadrightarrow} W^{2,1}.$	
Check $V(\ell arpi_2$	$) \hookrightarrow V(\varpi_2)^{\otimes \ell} \stackrel{(z=1)^{\otimes \ell}}{\twoheadrightarrow} (W^2)$	$(e^{a})^{\otimes \ell}$ preserves $ e^{a}* $	$ ^2$.

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof oooooooeo	Future work O
Lemma			
$ e^{oldsymbol{a}}v_{\ellarpi_2} ^2$ (in	$V(\ell \varpi_2)) = e^{\boldsymbol{a}}(w_1)^{\otimes \ell} ^2$	(in $\left(W^{2,1}\right)^{\otimes \ell}$).	
pf.) (i) [∃] inj. k	nom. $V(\ell \varpi_2) \hookrightarrow V(\varpi_2)^{\otimes \ell}$	[Nakajima].	
(ii) $V(\varpi_2) \cong$	$\mathbb{Q}[z,z^{-1}]\otimes W^{2,1}\Rightarrow \exists hom$	$V(\varpi_2) \stackrel{(z=1)}{\twoheadrightarrow} W^{2,1}.$	
Check $V(\ell arpi_2$	$) \hookrightarrow V(\varpi_2)^{\otimes \ell} \stackrel{(z=1)^{\otimes \ell}}{\twoheadrightarrow} (W^2)$	$(e^{a})^{\otimes \ell}$ preserves $ e^{a}* ^2$	². □

By combining this with the previous corollary, we have $||e^a(w_1)^{\otimes \ell}||^2 \in 1+qA, \text{ and hence it suffices to show the following:}$

Lemma

$$||e^{a}(w_{1})^{\otimes \ell}||^{2}$$
 (in $(W^{2,1})^{\otimes \ell}$) = $||e^{a}w_{\ell}||^{2}$ (in $W^{2,\ell}$).

For simplicity, assume $\ell = 2$.
Basic	
0000	

Criterion	[∃] cry.	p.base
00		

$$|\mathsf{pf} \mathsf{ of } || e^{a}(w_1)^{\otimes 2} ||^2 (\mathsf{in } (W^{2,1})^{\otimes 2}) = || e^{a} w_2 ||^2 (\mathsf{in } W^{2,2})$$

 $||e^{a}(w_{1})^{\otimes 2}||^{2} = ||\sum_{b} q^{c(b)}e^{a-b}w_{1} \otimes e^{b}w_{1}||^{2}$

Basic notions	Criterion for [∃] cry. p.base	Proof	Future work	
0000000	oo	oooooooo●	O	

$$| \text{pf of } ||e^{a}(w_{1})^{\otimes 2}||^{2} \text{ (in } (W^{2,1})^{\otimes 2}) = ||e^{a}w_{2}||^{2} \text{ (in } W^{2,2})$$

$$\begin{aligned} ||e^{a}(w_{1})^{\otimes 2}||^{2} &= ||\sum_{b} q^{c(b)} e^{a-b} w_{1} \otimes e^{b} w_{1}||^{2} \\ &= \sum_{b,b'} q^{c(b)+c(b')} (e^{a-b} w_{1}, e^{a-b'} w_{1}) (e^{b} w_{1}, e^{b'} w_{1}) \end{aligned}$$

Basic notions 0000000	Criterion for [∃] cry. p.base 00	Proof ○○○○○○○●	Future work 0
pf of $ e^{a}(w) $	$ _{1})^{\otimes 2} ^{2}$ (in $(W^{2,1})^{\otimes 2}$) = $ e^{a}$	$ w_2 ^2$ (in $W^{2,2}$)	
$ e^{\boldsymbol{a}}(w_1)^{\otimes 2} ^2$	$= \sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_1 \otimes e^{\boldsymbol{b}} w_1$	$ ^2$	
$=\sum_{m{b},m{b'}}q^{c(m{b})}$	$+c(b')(e^{a-b}w_1, e^{a-b'}w_1)(e^{b}w_1)$	$w_1, e^{\boldsymbol{b'}} w_1)$	

 $= \sum_{\bm{b}} q^{2c(\bm{b})} ||e^{\bm{a}-\bm{b}}w_1||^2 ||e^{\bm{b}}w_1||^2 \ (\because (e^{\bm{b}}w_1, e^{\bm{b'}}w_1) = 0 \text{ unless } \bm{b} = \bm{b'})$

 $\underline{\operatorname{recall}} \quad \left(R(u), R(v)\right) = \left(u, R(v)\right)', \text{ where } R \colon W_q^2 \otimes W_{q^{-1}}^2 \xrightarrow{R} W_{q^{-1}}^2 \otimes W_q^2.$

Basic notions 0000000	Criterion for [∃] cry. p.base ○○	Proof 00000000●	Future work o
pf of $ e^{a}(w_{1}) $	$ ^{\otimes 2} ^{2}$ (in $(W^{2,1})^{\otimes 2}$) = $ e^{c} ^{\otimes 2}$	$ w_2 ^2$ (in $W^{2,2}$)	
$ e^{\boldsymbol{a}}(w_1)^{\otimes 2} ^2$	$= \sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} e^{\boldsymbol{a}-\boldsymbol{b}} w_1 \otimes e^{\boldsymbol{b}} w_1$	$ v_1 ^2$	
$=\sum_{\boldsymbol{b},\boldsymbol{b}'}q^{c(\boldsymbol{b})\cdot}$	$+c(\mathbf{b'})(e^{\mathbf{a}-\mathbf{b}}w_1, e^{\mathbf{a}-\mathbf{b'}}w_1)(e^{\mathbf{b}})$	$w_1, e^{\boldsymbol{b'}} w_1)$	
$=\sum_{b}q^{2c(b)} $	$e^{a-b}w_1 ^2 e^bw_1 ^2$ (:: $(e^bw_1) ^2$	$w_1, e^{\boldsymbol{b'}} w_1) = 0$ unless	(b = b')
$\underline{recall} (R(u))$	$\left(R(v) ight) = ig(u,R(v)ig)^{\prime}$, wher	$\mathbf{e} \; R \colon W_q^2 \otimes W_{q^{-1}}^2 \xrightarrow{R}$	$W_{q^{-1}}^2 \otimes W_q^2.$
$ e^{a}w_{2} ^{2} = (e^{a}w_{2}) ^{2}$	$e^{oldsymbol{a}}(w_1)^{\otimes 2}, e^{oldsymbol{a}}(w_1)^{\otimes 2})'$ (or	$(W_q^2 \otimes W_{q^{-1}}^2) \times (W_q^2)$	$W_{q^{-1}}^2 \otimes W_q^2) \Big)$
$= \left(\sum_{\boldsymbol{b}} q^{c(\boldsymbol{b})} + \right)$	$-d(\boldsymbol{b})e^{\boldsymbol{a}-\boldsymbol{b}}w_1\otimes e^{\boldsymbol{b}}w_1,\sum_{\boldsymbol{b'}}q^c$	$(b')-d(b')e^{a-b'}w_1\otimes e^{a-b'}w_1\otimes e^{a-b$	$(b'w_1)'$
$=\sum_{\boldsymbol{b}}q^{2c(\boldsymbol{b})} $	$e^{a-b}w_1 ^2 e^bw_1 ^2.$		

pf of $||e_iu||^2 \in q^{-2\langle h_i, \operatorname{wt}(u) \rangle - 1}A$ is in a similar spirit.

In these cases the fermionic formula is quite complicated \rightsquigarrow no explicit, closed formula for dec. $W^{r,\ell} \cong \bigoplus V_0(\operatorname{wt}(u))$ so far. Hence it is difficult to find the vectors $\{u_k\}$ in the criterion.

In these cases the fermionic formula is quite complicated \rightsquigarrow no explicit, closed formula for dec. $W^{r,\ell} \cong \bigoplus V_0(\operatorname{wt}(u))$ so far. Hence it is difficult to find the vectors $\{u_k\}$ in the criterion.

^{\exists}algorithm: (dec. of $W^{r,\ell}$) \rightarrow (dec. of $W^{r,\ell+1}$) (Kleber algorithm)

In these cases the fermionic formula is quite complicated \rightsquigarrow no explicit, closed formula for dec. $W^{r,\ell} \cong \bigoplus V_0(\operatorname{wt}(u))$ so far. Hence it is difficult to find the vectors $\{u_k\}$ in the criterion.

^{\exists}algorithm: (dec. of $W^{r,\ell}$) \rightarrow (dec. of $W^{r,\ell+1}$) (Kleber algorithm)

<u>Q.</u> Can we find an algorithm: (vectors of $W^{r,\ell}$ in the criterion) \rightarrow (vectors of $W^{r,\ell+1}$ in the criterion) corresponding to the Kleber algorithm?