Equivalence via quantum affine Schur-Weyl duality

Katsuyuki Naoi
Tokyo University of Agriculture and Technology

Algebraic Lie Theory and Representation Theory, June 28, 2021
arXiv:2101.03573

Summary of today's result

\mathcal{F} : gen. Q-affine
SW duality functor

Theorem ([N])

In a general affine type, \mathcal{F} gives an equivalence of two monoidal categories.
In untwisted $A D E$ types, this was previously proved by Fujita.

Summary of today's result

Theorem ([N])

In a general affine type, \mathcal{F} gives an equivalence of two monoidal categories.
In untwisted $A D E$ types, this was previously proved by Fujita.

Notation A-Mod: cat. of f.g. A-modules
A-mod: cat. of f.d. A-modules

Quiver Hecke algebras $R(\beta)$

Khovanov-Lauda [KL09] and Rouquier [Rou08] defined independently.
Given a Kac-Moody g (or its Cartan matrix A)
$\rightsquigarrow R(\beta)$: quiver Hecke algebras (family of algebras, $\beta \in Q^{+}=\sum_{i} \mathbb{Z}_{\geq 0} \alpha_{i}$)

- $R(\beta)$ are \mathbb{Z}-graded algebras,
- $M \in R(\beta)$-gmod, $M^{\prime} \in R\left(\beta^{\prime}\right)$-gmod,
$\rightsquigarrow M \circ M^{\prime} \in R\left(\beta+\beta^{\prime}\right)$-gmod: convolution product

Quiver Hecke algebras $R(\beta)$

Khovanov-Lauda [KL09] and Rouquier [Rou08] defined independently.
Given a Kac-Moody g (or its Cartan matrix A)
$\rightsquigarrow R(\beta)$: quiver Hecke algebras (family of algebras, $\beta \in Q^{+}=\sum_{i} \mathbb{Z}_{\geq 0} \alpha_{i}$)

- $R(\beta)$ are \mathbb{Z}-graded algebras,
- $M \in R(\beta)$-gmod, $M^{\prime} \in R\left(\beta^{\prime}\right)$-gmod,
$\rightsquigarrow M \circ M^{\prime} \in R\left(\beta+\beta^{\prime}\right)$-gmod: convolution product

Theorem ([KL09],[Rou08])

$\bigoplus K(R(\beta)-\mathrm{gmod}) \cong U_{\mathbf{A}}^{-}(\mathrm{g})^{\vee}$: int. form of the dual of the half of $U_{q}(\mathrm{~g})$
β

$$
\text { (as } \mathbb{Z}\left[q^{ \pm 1}\right] \text {-algebra) }
$$

Theorem ([Varagnolo-Vasserot, 11], [Rouquier, 12])

g : symmetric \Rightarrow the isom. sends simples to the upper global basis.

$$
\underset{\beta}{\bigoplus_{\beta} K(R(\beta)-\mathrm{gmod})} \underset{\cup}{\cong U_{\mathbf{A}}^{-}(\mathrm{g})^{\vee}}
$$

\{simples\} \rightarrow \{upper global basis $\}$
By specializing at $q=1$, we obtain the following.

Corollary

If g is a simple Lie algebra of type $A D E$,
(i) $\bigoplus \mathbb{C} \otimes_{\mathbb{Z}} K\left(R(\beta)-\bmod ^{0}\right) \cong \mathbb{C}[N]$,
β
where $R(\beta)-\bmod ^{0}$: cat. of $\mathrm{f} . \mathrm{d}$. mod. on which x_{k} 's act nilpotently (obtained from graded ones by forgetting the gradings)
$\mathbb{C}[N]$: coordinate ring of the unipotent group associated with g.
(ii) This isom. sends simples to (the specialization of) upper global basis.

$$
\underset{\beta}{\bigoplus_{\mathcal{B}} K(R(\beta)-\mathrm{gmod})} \cong \underset{\cup}{U_{\mathbf{A}}^{-}(\mathrm{g})^{\vee}}
$$

\{simples\} \rightarrow \{upper global basis $\}$
By specializing at $q=1$, we obtain the following.

Corollary

If g is a simple Lie algebra of type $A D E$,
(i) $\bigoplus \mathbb{C} \otimes_{\mathbb{Z}} K\left(R(\beta)-\bmod ^{0}\right) \cong \mathbb{C}[N]$,
β
where $R(\beta)-\bmod ^{0}$: cat. of $\mathrm{f} . \mathrm{d}$. mod. on which x_{k} 's act nilpotently (obtained from graded ones by forgetting the gradings)
$\mathbb{C}[N]$: coordinate ring of the unipotent group associated with g.
(ii) This isom. sends simples to (the specialization of) upper global basis.

There is another algebra categorifying the same things!

Hernandez-Leclerc's subcategory

[Hernandez-Leclerc, 15]
g : simple Lie algebra of type $A D E, \quad R^{+}$: positive roots of g
$\hat{\mathrm{g}}$: untwisted affine Lie algebra associated with g ,
$\mathcal{C}_{\hat{\mathrm{g}}}$: cat. of f.d. $U_{q}^{\prime}(\hat{\mathrm{g}})$-modules $\quad\left(U_{q}^{\prime}(\widehat{\mathrm{g}})\right.$: quantum group of $\left.\widehat{\mathrm{g}}\right)$

Hernandez-Leclerc's subcategory

[Hernandez-Leclerc, 15]
g : simple Lie algebra of type $A D E, \quad R^{+}$: positive roots of g
$\hat{\mathrm{g}}$: untwisted affine Lie algebra associated with g ,
$\mathcal{C}_{\hat{\mathrm{g}}}$: cat. of f.d. $U_{q}^{\prime}(\hat{\mathrm{g}})$-modules $\quad\left(U_{q}^{\prime}(\widehat{\mathrm{g}})\right.$: quantum group of $\left.\widehat{\mathrm{g}}\right)$
They defined a map $Q: R^{+} \ni \alpha \mapsto V^{\alpha} \in \mathcal{C}_{\hat{\mathrm{g}}}$: simple (fundamental) modules (using the theory of Auslander-Reiten quiver)

Hernandez-Leclerc's subcategory

[Hernandez-Leclerc, 15]
g : simple Lie algebra of type $A D E, \quad R^{+}$: positive roots of g
$\hat{\mathrm{g}}$: untwisted affine Lie algebra associated with g,
$\mathcal{C}_{\hat{\mathrm{g}}}$: cat. of f.d. $U_{q}^{\prime}(\hat{\mathrm{g}})$-modules $\quad\left(U_{q}^{\prime}(\widehat{\mathrm{g}})\right.$: quantum group of $\left.\widehat{\mathrm{g}}\right)$
They defined a map $Q: R^{+} \ni \alpha \mapsto V^{\alpha} \in \mathcal{C}_{\hat{\mathrm{g}}}$: simple (fundamental) modules (using the theory of Auslander-Reiten quiver)
$\rightsquigarrow \mathcal{C}_{\hat{\mathrm{g}}} \supseteq \mathcal{C}_{Q}$: containing $V^{\alpha}\left(\alpha \in R_{+}\right)$, stable under \otimes, ext., subquot..

Hernandez-Leclerc's subcategory

[Hernandez-Leclerc, 15]
g : simple Lie algebra of type $A D E, \quad R^{+}$: positive roots of g
$\hat{\mathrm{g}}$: untwisted affine Lie algebra associated with g,
$\mathcal{C}_{\hat{\mathrm{g}}}$: cat. of f.d. $U_{q}^{\prime}(\hat{\mathrm{g}})$-modules $\quad\left(U_{q}^{\prime}(\widehat{\mathrm{g}})\right.$: quantum group of $\left.\widehat{\mathrm{g}}\right)$
They defined a map $Q: R^{+} \ni \alpha \mapsto V^{\alpha} \in \mathcal{C}_{\hat{\mathrm{g}}}$: simple (fundamental) modules (using the theory of Auslander-Reiten quiver)
$\rightsquigarrow \mathcal{C}_{\hat{\mathrm{g}}} \supseteq \mathcal{C}_{Q}$: containing $V^{\alpha}\left(\alpha \in R_{+}\right)$, stable under \otimes, ext., subquot..

Theorem

$\mathbb{C} \otimes_{\mathbb{Z}} K\left(\mathcal{C}_{Q}\right) \cong \mathbb{C}[N]$ as a \mathbb{C}-algebra, and this sends simples to (the specialization of) upper global basis.

$$
\begin{aligned}
& \bigoplus \mathbb{C} \otimes_{\mathbb{Z}} K\left(R(\beta)-\bmod ^{0}\right) \cong \mathbb{C}[N] \cong \mathbb{C} \otimes_{\mathbb{Z}} K\left(\mathcal{C}_{Q}\right) \\
& \beta \\
& \text { (simples) } \quad \leftrightarrow \text { (gl. basis) } \leftrightarrow \quad \text { (simples) }
\end{aligned}
$$

Q. Is there a functor between $R(\beta)-\bmod ^{0}$ and \mathcal{C}_{Q} inducing this isomorphism?

$$
\begin{aligned}
& \bigoplus \mathbb{C} \otimes_{\mathbb{Z}} K\left(R(\beta)-\bmod ^{0}\right) \cong \mathbb{C}[N] \cong \mathbb{C} \otimes_{\mathbb{Z}} K\left(\mathcal{C}_{Q}\right) \\
& \beta \\
& \text { (simples) } \leftrightarrow \text { (gl. basis) } \leftrightarrow \quad \text { (simples) }
\end{aligned}
$$

Q. Is there a functor between $R(\beta)-\bmod ^{0}$ and \mathcal{C}_{Q} inducing this isomorphism?

Type A [Chari-Pressley, Cherednik, Ginzburg-Varagnolo-Vasserot]
$R(\beta)-\bmod ^{0} \fallingdotseq H_{q}^{\text {aff }}(d)-\bmod$ (affine Hecke algebra)
$\mathbb{V}^{\otimes d}:\left(U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right), H_{q}^{\text {aff }}(d)\right)$-bimodule
$\Rightarrow H_{q}^{\text {aff }}(d)-\bmod \ni M \mapsto \mathbb{V}^{\otimes d} \otimes_{H_{q}^{\text {aff }}(d)} M \in \mathcal{C}_{\widehat{\mathfrak{s}}_{n}}$
(quantum affine Schur-Weyl duality functor)

Kang-Kashiwara-Kim's construction of functors

[KKK18]: construction of functors in general setting
[KKK15]: application of the results in [KKK18] to HL subcategories (giving an answer to the previous Q.)

Kang-Kashiwara-Kim's construction of functors

[KKK18]: construction of functors in general setting [KKK15]: application of the results in [KKK18] to HL subcategories (giving an answer to the previous Q.)

Review on [KKK18] (Given data $\left\{V_{i}\right\} \rightsquigarrow \mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\mathfrak{g}}$)

Kang-Kashiwara-Kim's construction of functors

[KKK18]: construction of functors in general setting [KKK15]: application of the results in [KKK18] to HL subcategories (giving an answer to the previous Q.)

Review on [KKK18] (Given data $\left\{V_{i}\right\} \rightsquigarrow \mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\mathfrak{g}}$)
$U_{q}^{\prime}(\mathfrak{g})$: quantum affine algebra of a general affine type
Given a family of real simple modules $\left\{V_{i}\right\}_{i \in J} \in \mathcal{C}_{\mathfrak{g}}$

Kang-Kashiwara-Kim's construction of functors

[KKK18]: construction of functors in general setting [KKK15]: application of the results in [KKK18] to HL subcategories (giving an answer to the previous Q.)

Review on [KKK18] (Given data $\left\{V_{i}\right\} \rightsquigarrow \mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\mathfrak{g}}$)
$U_{q}^{\prime}(\mathfrak{g})$: quantum affine algebra of a general affine type
Given a family of real simple modules $\left\{V_{i}\right\}_{i \in J} \in \mathcal{C}_{\mathfrak{g}}$
\rightsquigarrow define a Cartan matrix $A=\left(a_{i j}\right)_{i, j \in J}$ by
$a_{i j}=\left\{\begin{array}{ll}2 & (i=j), \\ -b_{i j}-b_{j i} & (i \neq j),\end{array}\right.$ where
$b_{i j}=\left(\right.$ deg. of pole of $V_{i} \otimes\left(V_{j}\left[z^{ \pm 1}\right]\right) \xrightarrow{R_{\text {norm }}}\left(V_{j}(z)\right) \otimes V_{i}$ at $\left.z=1\right)$.
$\rightsquigarrow\{R(\beta)\}_{\beta \in Q^{+}}$: quiver Hecke algebras assoc. with A

Then we construct a $\left(U_{q}^{\prime}(\mathfrak{g}), R(\beta)\right)$-bimodule as follows.
$V_{i}(i \in J) \rightsquigarrow \widehat{V}_{i}=V_{i} \llbracket w \rrbracket:$ a completed affinization $\quad\left(U_{q}^{\prime}(\mathfrak{g})\right.$-module $)$
For $\beta \in Q^{+}, \widehat{V}^{\otimes \beta}=\bigoplus_{\alpha_{i_{1}}+\cdots+\alpha_{i_{p}}=\beta} \widehat{V}_{i_{1}} \hat{\otimes} \cdots \hat{\otimes} \widehat{V}_{i_{p}}$.
$U_{q}^{\prime}(\mathfrak{g}) \curvearrowright \widehat{V}^{\otimes \beta} \curvearrowleft R(\beta)$ defined using R-matrices
$\rightsquigarrow \mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\mathfrak{g}}, \quad M \mapsto \widehat{V}^{\otimes \beta} \otimes_{R(\beta)} M$
$\mathcal{F}=\bigoplus_{\beta} \mathcal{F}_{\beta}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\mathfrak{g}}:$ gene'd \mathbf{Q}-aff. $\mathbf{S W}$ duality functor

Then we construct a $\left(U_{q}^{\prime}(\mathfrak{g}), R(\beta)\right)$-bimodule as follows.
$V_{i}(i \in J) \rightsquigarrow \widehat{V}_{i}=V_{i} \llbracket w \rrbracket$: a completed affinization $\quad\left(U_{q}^{\prime}(\mathfrak{g})\right.$-module)
For $\beta \in Q^{+}, \widehat{V}^{\otimes \beta}=\bigoplus \quad \widehat{V}_{i_{1}} \hat{\otimes} \cdots \hat{\otimes} \widehat{V}_{i_{p}}$.

$$
\alpha_{i_{1}}+\cdots+\alpha_{i_{p}}=\beta
$$

$U_{q}^{\prime}(\mathfrak{g}) \curvearrowright \widehat{V}^{\otimes \beta} \curvearrowleft R(\beta)$ defined using R-matrices
$\rightsquigarrow \mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\mathfrak{g}}, \quad M \mapsto \widehat{V}^{\otimes \beta} \otimes_{R(\beta)} M$
$\mathcal{F}=\bigoplus_{\beta} \mathcal{F}_{\beta}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\mathfrak{g}}:$ gene'd \mathbf{Q}-aff. $\mathbf{S W}$ duality functor

Theorem ([KKK18])

(i) \mathcal{F} is monoidal $\left(\mathcal{F}\left(M \circ M^{\prime}\right) \cong \mathcal{F}(M) \otimes \mathcal{F}\left(M^{\prime}\right)\right.$, etc. $)$.
(ii) If $\{R(\beta)\}$ are of type $A D E, \mathcal{F}$ is exact.

In [KKK15], a functor $\mathcal{F}: \bigoplus_{\beta \in Q^{+}} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q}$ in untwisted $A D E$ types $(\mathfrak{g}=\widehat{\mathrm{g}})$ was constructed using the results of [KKK18], which gives an answer to the previous question.

In [KKK15], a functor $\mathcal{F}: \bigoplus_{\beta \in Q^{+}} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q}$ in untwisted $A D E$ types $(\mathfrak{g}=\widehat{\mathrm{g}})$ was constructed using the results of [KKK18], which gives an answer to the previous question.
recall In the construction of \mathcal{C}_{Q}, defined a map $R^{+} \ni \alpha \mapsto V^{\alpha} \in \mathcal{C}_{\hat{\mathrm{g}}}$.
Take $\left\{V^{\alpha_{i}}\right\}_{i \in J}$ as the given data $\rightsquigarrow \mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\hat{\mathrm{g}}}$.

- In this case, $R(\beta)$ is of type $\mathrm{g} \Rightarrow \mathcal{F}$ is exact.
- The image of $\mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\hat{\mathrm{g}}}$ is contained in \mathcal{C}_{Q}.

In [KKK15], a functor $\mathcal{F}: \bigoplus_{\beta \in Q^{+}} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q}$ in untwisted $A D E$ types $(\mathfrak{g}=\widehat{\mathrm{g}})$ was constructed using the results of [KKK18], which gives an answer to the previous question.
recall In the construction of \mathcal{C}_{Q}, defined a map $R^{+} \ni \alpha \mapsto V^{\alpha} \in \mathcal{C}_{\hat{\mathrm{g}}}$.
Take $\left\{V^{\alpha_{i}}\right\}_{i \in J}$ as the given data $\rightsquigarrow \mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\hat{\mathrm{g}}}$.

- In this case, $R(\beta)$ is of type $\mathrm{g} \Rightarrow \mathcal{F}$ is exact.
- The image of $\mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{\hat{\mathrm{g}}}$ is contained in \mathcal{C}_{Q}.

Theorem ([KKK15])

In this case, the gene'd QASW duality functor $\mathcal{F}: \bigoplus R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q}$,
β
which is monoidal and exact, gives one-to-one corresp. between simples. $\left(\Rightarrow \bigoplus_{\beta} K\left(R(\beta)-\bmod ^{0}\right) \xrightarrow{\sim} K\left(\mathcal{C}_{Q}\right)\right)$
$\mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q}$ is monoidal, exact, gives one-to-one corresp. between simples.

Natrual problems
(i) Is this an equivalence?
(ii) Is there a generalization to the cases other than untwisted ADE types?

Both problems have been solved affirmatively!
$\mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q}$ is monoidal, exact, gives one-to-one corresp. between simples.

Natrual problems
(i) Is this an equivalence?
(ii) Is there a generalization to the cases other than untwisted ADE types?

Both problems have been solved affirmatively!

Theorem ([Fujita, 17], [Fujita, 20])

The gene'd QASW duality functor $\mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q}$ gives an equivalence of monoidal categories (in untwisted $A D E$ types).

In the proof of [Fujita, 17], he used the geometric representation theory on quiver varieties and the theory of affine highest weight categories (we will return to this result later).

generalization to non-ADE cases

\mathfrak{g} : non-simply laced (untwisted or twisted) affine Lie algebra
Set a simple Lie algebra g to be as follows:

$U_{q}^{\prime}(\mathfrak{g})$	$B_{n}^{(1)}$	$C_{n}^{(1)}$	$F_{4}^{(1)}$	$G_{2}^{(1)}$	$A_{n}^{(2)}$	$D_{n}^{(2)}$	$E_{6}^{(2)}$	$D_{4}^{(3)}$
g	$A_{2 n-1}$	D_{n+1}	E_{6}	D_{4}	A_{n}	D_{n}	E_{6}	D_{4}

generalization to non-ADE cases

\mathfrak{g} : non-simply laced (untwisted or twisted) affine Lie algebra
Set a simple Lie algebra g to be as follows:

$U_{q}^{\prime}(\mathfrak{g})$	$B_{n}^{(1)}$	$C_{n}^{(1)}$	$F_{4}^{(1)}$	$G_{2}^{(1)}$	$A_{n}^{(2)}$	$D_{n}^{(2)}$	$E_{6}^{(2)}$	$D_{4}^{(3)}$
g	$A_{2 n-1}$	D_{n+1}	E_{6}	D_{4}	A_{n}	D_{n}	E_{6}	D_{4}

Similarly as $A D E$ cases, define a map $R_{\mathrm{g}}^{+} \ni \alpha \mapsto V^{\alpha} \in \mathcal{C}_{\mathfrak{g}}$, and set $\mathcal{C}_{Q}=\left\langle V^{\alpha}\right\rangle_{\otimes, \text { ext.,subquot. }}$
\rightsquigarrow functor $\mathcal{F}: \bigoplus_{\beta} R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q} \quad(\{R(\beta)\}:$ quiver Hecke of type g$)$

Theorem ([KKK16], [Kashiwara-Oh, 19], [Oh-Scrimshaw, 19])

In all the above cases, the gene'd QASW duality functor \mathcal{F} is monoidal, exact, and gives one-to-one correspondence between simple modules.

$$
\left(\Rightarrow \bigoplus_{\beta} K\left(R(\beta)-\bmod ^{0}\right) \stackrel{\sim}{\rightarrow} K\left(\mathcal{C}_{Q}\right) .\right)
$$

Summary

$U_{q}^{\prime}(\mathfrak{g})$	monoidal	exact	bij. of simples	equiv.
$A D E$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
others	\bigcirc	\bigcirc	\bigcirc	$?$

Summary

$U_{q}^{\prime}(\mathfrak{g})$	monoidal	exact	bij. of simples	equiv.
$A D E$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
others	\bigcirc	\bigcirc	\bigcirc	$?$

Theorem ([N])

In general types, the gene'd QASW duality functor \mathcal{F} gives an equivalence of monoidal categories $\bigoplus_{\beta} R(\beta)-\bmod ^{0}$ and \mathcal{C}_{Q}.

Proof to [Conjecture 5.7, KKK16], [Conjecture 6.11, KO19].

Corollary

Let $\mathfrak{g}^{(1)}$: untwisted $A D E, \mathfrak{g}^{(t)}$: twisted, ${ }^{L} \mathfrak{g}^{(t)}$: the Langland dual of $\mathfrak{g}^{(t)}$
$\mathcal{C}_{Q^{(1)}}, \mathcal{C}_{Q^{(t)}}, \mathcal{C}_{L_{Q}}$: corresponding (generalizations) of HL subcategories

Corollary

The monoidal categories $\mathcal{C}_{Q^{(1)}}, \mathcal{C}_{Q^{(t)}}, \mathcal{C}_{L_{Q}}$ are mutually equivalent.
\because The corresponding quiver Hecke algebras $R(\beta)$ are the same.
Ex.

$$
\begin{gathered}
\mathcal{C}_{Q^{(1)}} \subseteq \mathcal{C}_{A_{2 n-1}^{(1)}}^{\uparrow_{2}} \\
\mathcal{C}_{A_{2 n-1}^{(2)}} \supseteq \mathcal{C}_{Q^{(2)}} \stackrel{\sim}{\sim} \bigoplus_{\beta} R^{A_{2 n-1}}(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{L_{Q}} \subseteq \mathcal{C}_{B_{n}^{(1)}}
\end{gathered}
$$

strategy of the proof of $\mathcal{F}: \bigoplus R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q}$

Fact \mathcal{C}_{Q} has a block dec. $\mathcal{C}_{Q}=\bigoplus_{\beta} \mathcal{C}_{Q, \beta}\left(\beta \in Q^{+}\right)$such that $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q, \beta}$
\therefore Enough to prove $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q, \beta}$ for each β.

strategy of the proof of $\mathcal{F}: \bigoplus R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q}$

Fact \mathcal{C}_{Q} has a block dec. $\mathcal{C}_{Q}=\bigoplus_{\beta} \mathcal{C}_{Q, \beta}\left(\beta \in Q^{+}\right)$such that $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q, \beta}$
\therefore Enough to prove $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q, \beta}$ for each β.
From the homological viewpoint, $R(\beta)-\bmod ^{0}$ and $\mathcal{C}_{Q, \beta}$ are too small (e.g., not enough proj.)
$R(\beta)=\bigoplus_{n \in \mathbb{Z}} R(\beta)_{n} \rightsquigarrow \widehat{R}(\beta)=\prod_{n} R(\beta)_{n}$: completion (cf. $\left.\mathbb{C}[z] \rightsquigarrow \mathbb{C} \llbracket z \rrbracket\right)$, and consider $\widehat{R}(\beta)-\operatorname{Mod}$ instead.

strategy of the proof of $\mathcal{F}: \bigoplus R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q}$

Fact \mathcal{C}_{Q} has a block dec. $\mathcal{C}_{Q}=\bigoplus_{\beta} \mathcal{C}_{Q, \beta}\left(\beta \in Q^{+}\right)$such that $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q, \beta}$
\therefore Enough to prove $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q, \beta}$ for each β.
From the homological viewpoint, $R(\beta)-\bmod ^{0}$ and $\mathcal{C}_{Q, \beta}$ are too small (e.g., not enough proj.)
$R(\beta)=\bigoplus_{n \in \mathbb{Z}} R(\beta)_{n} \rightsquigarrow \widehat{R}(\beta)=\prod_{n} R(\beta)_{n}$: completion (cf. $\left.\mathbb{C}[z] \rightsquigarrow \mathbb{C} \llbracket z \rrbracket\right)$), and consider $\widehat{R}(\beta)-\operatorname{Mod}$ instead.
advantage $\circ \widehat{R}(\beta)-\bmod =R(\beta)-\bmod ^{0}$

strategy of the proof of $\mathcal{F}: \bigoplus R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q}$

Fact \mathcal{C}_{Q} has a block dec. $\mathcal{C}_{Q}=\bigoplus_{\beta} \mathcal{C}_{Q, \beta}\left(\beta \in Q^{+}\right)$such that $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q, \beta}$
\therefore Enough to prove $\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \xrightarrow{\sim} \mathcal{C}_{Q, \beta}$ for each β.
From the homological viewpoint, $R(\beta)-\bmod ^{0}$ and $\mathcal{C}_{Q, \beta}$ are too small (e.g., not enough proj.)
$R(\beta)=\bigoplus_{n \in \mathbb{Z}} R(\beta)_{n} \rightsquigarrow \widehat{R}(\beta)=\prod_{n} R(\beta)_{n}$: completion (cf. $\left.\mathbb{C}[z] \rightsquigarrow \mathbb{C} \llbracket z \rrbracket\right)$, and consider $\widehat{R}(\beta)-\operatorname{Mod}$ instead.
advantage $\circ \widehat{R}(\beta)-\bmod =R(\beta)-\bmod ^{0}$

- $\widehat{R}(\beta)$-Mod is affine highest weight category!
(a generalization of highest weight cat. by Cline-Parshall-Scott. $\Delta(\lambda):$ standard $\rightarrow L(\lambda)$: simple $\hookrightarrow \bar{\nabla}(\lambda)$: proper costandard)

$$
\begin{aligned}
\mathcal{F}_{\beta}: R(\beta)-\bmod ^{0} \rightarrow \mathcal{C}_{Q, \beta}, \quad M & \mapsto \widehat{V}^{\otimes \beta} \otimes_{R(\beta)} M \\
& \left(\widehat{V}^{\otimes \beta}:\left(U_{q}^{\prime}(\mathfrak{g}), R(\beta)\right) \text {-bimod. }\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{F}_{\beta}: \widehat{R}(\beta)-\bmod \rightarrow \mathcal{C}_{Q, \beta}, \\
\quad \begin{array}{c}
\widehat{R}(\beta)-\operatorname{Mod} \\
\text { (aff. h.w.) }
\end{array}
\end{gathered}
$$

$M \mapsto \widehat{V}^{\otimes \beta} \otimes_{R(\beta)} M$
$\left(\widehat{V}^{\otimes \beta}:\left(U_{q}^{\prime}(\mathfrak{g}), R(\beta)\right)\right.$-bimod. $)$

$$
\begin{aligned}
& \mathcal{F}_{\beta}: \widehat{R}(\beta)-\bmod \rightarrow \mathcal{C}_{Q, \beta}, \quad M \mapsto \widehat{V}^{\otimes \beta} \otimes_{\widehat{R}(\beta)} M \\
& \text { extend } \downarrow \cap \cap \\
& \mathcal{F}_{\beta}: \widehat{R}(\beta) \text {-Mod } \rightarrow\left\{U_{q}^{\prime}(\mathfrak{g}) \text {-modules }\right\} \quad\left(\widehat{V}^{\otimes \beta}:\left(U_{q}^{\prime}(\mathfrak{g}), \widehat{R}(\beta)\right) \text {-bimod. }\right) \\
& \text { (aff. h.w.) }
\end{aligned}
$$

$$
\mathcal{F}_{\beta}: \widehat{R}(\beta)-\bmod \rightarrow \mathcal{C}_{Q, \beta}, \quad M \mapsto \widehat{V}^{\otimes \beta} \otimes_{\widehat{R}(\beta)} M
$$

extend \downarrow

$$
\underset{\text { (aff. h.w.) }}{\mathcal{F}_{\beta}: \widehat{R}(\beta) \text {-Mod }} \rightarrow\left\{U_{q}^{\prime}(\mathfrak{g}) \text {-modules }\right\} \quad\left(\widehat{V}^{\otimes \beta}:\left(U_{q}^{\prime}(\mathfrak{g}), \widehat{R}(\beta)\right) \text {-bimod. }\right)
$$

Theorem ([Fujita, 18])

A_{i}-Mod: affine h.w. $(i=1,2), F: A_{1}-\operatorname{Mod} \rightarrow A_{2}$-Mod: exact.
Assume (i) A_{i} is finitely generated over its center $(i=1,2)$,
(ii) ${ }^{\exists}$ bijection $f: \Pi_{1} \rightarrow \Pi_{2}$ such that $F(\Delta(\pi))=\Delta(f(\pi))$,

$$
F(\bar{\nabla}(\pi))=\bar{\nabla}(f(\pi)) \text { for }{ }^{\forall} \pi .
$$

Then F is an equivalence.

We consider the following project:
(i) Find an algebra A with an algebra homomorphism $\Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow A$.
(ii) Show that $\left.\Phi^{*}\right|_{A-\bmod }: A$-mod $\rightarrow U_{q}^{\prime}(\mathfrak{g})$-mod gives an equivalence between $A-\bmod$ and $\mathcal{C}_{Q, \beta}$.
(iii) Define $\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \rightarrow A$ - Mod s.t. $\left.\Phi^{*} \circ \mathcal{F}_{\beta}^{\prime}\right|_{\widehat{R}(\beta)-\bmod }=\mathcal{F}_{\beta}$.
(iv) Show that A-Mod is aff. h.w., and $\mathcal{F}_{\beta}^{\prime}$ gives an equivalence

$$
\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \xrightarrow{\sim} A \text {-Mod. }
$$

$$
\begin{aligned}
& \mathcal{F}_{\beta}: \widehat{R}(\beta)-\bmod \rightarrow A-\bmod \xrightarrow{\stackrel{\Phi^{*}}{\rightarrow}} \mathcal{C}_{Q, \beta} \\
& \mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \rightarrow A \text {-Mod } \\
& \text { (aff. h.w.) }
\end{aligned}
$$

proof in untwisted $A D E$ in [Fujita, 17]

(i) Find an algebra A with an algebra homomorphism $\Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow A$.
(ii) Show that $\left.\Phi^{*}\right|_{A-\bmod }: A$-mod $\rightarrow U_{q}^{\prime}(\mathfrak{g})$-mod gives an equivalence between A-mod and \mathcal{C}_{Q}.
(iii) Define $\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \rightarrow A$ - Mod s.t. $\left.\Phi^{*} \circ \mathcal{F}_{\beta}^{\prime}\right|_{\widehat{R}(\beta)-\bmod }=\mathcal{F}_{\beta}$.
(iv) Show that A-Mod is aff. h.w., and $\mathcal{F}_{\beta}^{\prime}$ gives an equivalence $\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \xrightarrow{\sim} A$-Mod.

In [Fujita, 17], he achieved this project with $A=\widehat{\mathcal{K}}^{\mathbb{G}}\left(Z^{\bullet}\right)$
(completed equiv. K-gps of the Steinberg type graded quiver var.)
(i) ${ }^{\exists} \Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow \widehat{\mathcal{K}}^{\mathbb{G}}\left(Z^{\bullet}\right)$ by Nakajima,
(iii) define $\widehat{\mathcal{K}}^{\mathbb{G}}\left(Z^{\bullet}\right) \curvearrowright \widehat{V}^{\otimes \beta}$ geometrically,
(ii), (iv) work hard (omit)

proof in general types

(i) Find an algebra A with an algebra homomorphism $\Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow A$.
(ii) Show that $\left.\Phi^{*}\right|_{A-\bmod }: A$-mod $\rightarrow U_{q}^{\prime}(\mathfrak{g})$-mod gives an equivalence between A-mod and \mathcal{C}_{Q}.
(iii) Define $\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \rightarrow A$ - Mod s.t. $\left.\Phi^{*} \circ \mathcal{F}_{\beta}^{\prime}\right|_{\widehat{R}(\beta)-\bmod }=\mathcal{F}_{\beta}$.
(iv) Show that A-Mod is aff. h.w., and $\mathcal{F}_{\beta}^{\prime}$ gives an equivalence $\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \xrightarrow{\sim} A$-Mod.

There is no quiver var., and we adopt a completely different algebra A.

proof in general types

(i) Find an algebra A with an algebra homomorphism $\Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow A$.
(ii) Show that $\left.\Phi^{*}\right|_{A-\text { mod }}: A$-mod $\rightarrow U_{q}^{\prime}(\mathfrak{g})$-mod gives an equivalence between A-mod and \mathcal{C}_{Q}.
(iii) Define $\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \rightarrow A$-Mod s.t. $\left.\Phi^{*} \circ \mathcal{F}_{\beta}^{\prime}\right|_{\widehat{R}(\beta)-\bmod }=\mathcal{F}_{\beta}$.
(iv) Show that A-Mod is aff. h.w., and $\mathcal{F}_{\beta}^{\prime}$ gives an equivalence $\mathcal{F}_{\beta}^{\prime}: \widehat{R}(\beta)-\operatorname{Mod} \xrightarrow{\sim} A$-Mod.

There is no quiver var., and we adopt a completely different algebra A. recall $\widehat{V}^{\otimes \beta}:\left(U_{q}^{\prime}(\mathfrak{g}), \widehat{R}(\beta)\right)$-bimod., $\quad \mathcal{F}_{\beta}(M):=\widehat{V}^{\otimes \beta} \otimes_{\widehat{R}(\beta)} M$ Set $\mathbb{E}^{\beta}=\operatorname{End}_{\widehat{R}(\beta)^{\text {opp }}}\left(\widehat{V}^{\otimes \beta}\right) \quad$ (analog of Schur algebra).

This \mathbb{E}^{β} is our A. (i), (iii) are obvious.

Theorem ([N])

Set $\mathbb{E}^{\beta}=\operatorname{End}_{\widehat{R}(\beta) \text { opp }}\left(\widehat{V}^{\otimes \beta}\right)$.
(i) The alg. hom. $\Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow \mathbb{E}^{\beta}$ induces an equiv. $\Phi^{*}: \mathbb{E}^{\beta}-\bmod \xrightarrow{\sim} \mathcal{C}_{Q, \beta}$.
(ii) \mathbb{E}^{β} - Mod is aff. h.w., and \mathcal{F}_{β} gives an equiv. $\widehat{R}(\beta)$ - $\operatorname{Mod} \xrightarrow{\sim} \mathbb{E}^{\beta}$-Mod.

In the proof, we use affine cellular str. of (a quotient) of $U_{q}^{\prime}(\mathfrak{g})$ and \mathbb{E}^{β}.

Theorem ([N])

Set $\mathbb{E}^{\beta}=\operatorname{End}_{\widehat{R}(\beta)_{\text {opp }}}\left(\widehat{V}^{\otimes \beta}\right)$.
(i) The alg. hom. $\Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow \mathbb{E}^{\beta}$ induces an equiv. $\Phi^{*}: \mathbb{E}^{\beta}-\bmod \xrightarrow{\sim} \mathcal{C}_{Q, \beta}$.
(ii) \mathbb{E}^{β}-Mod is aff. h.w., and \mathcal{F}_{β} gives an equiv. $\widehat{R}(\beta)$ - $\operatorname{Mod} \xrightarrow{\sim} \mathbb{E}^{\beta}$-Mod.

In the proof, we use affine cellular str. of (a quotient) of $U_{q}^{\prime}(\mathfrak{g})$ and \mathbb{E}^{β}.
future work Study (a polynomial part of) \mathbb{E}^{β}.

- generators and relations?
- Is this graded?
- convolution product? $\mathbb{E}^{\beta}-\operatorname{Mod} \times \mathbb{E}^{\beta^{\prime}}-\operatorname{Mod} \rightarrow \mathbb{E}^{\beta+\beta^{\prime}}-\operatorname{Mod}$

Theorem ([N])

Set $\mathbb{E}^{\beta}=\operatorname{End}_{\widehat{R}(\beta)^{\text {opp }}}\left(\widehat{V}^{\otimes \beta}\right)$.
(i) The alg. hom. $\Phi: U_{q}^{\prime}(\mathfrak{g}) \rightarrow \mathbb{E}^{\beta}$ induces an equiv. $\Phi^{*}: \mathbb{E}^{\beta}-\bmod \xrightarrow{\sim} \mathcal{C}_{Q, \beta}$.
(ii) \mathbb{E}^{β}-Mod is aff. h.w., and \mathcal{F}_{β} gives an equiv. $\widehat{R}(\beta)$ - $\operatorname{Mod} \xrightarrow{\sim} \mathbb{E}^{\beta}$-Mod.

In the proof, we use affine cellular str. of (a quotient) of $U_{q}^{\prime}(\mathfrak{g})$ and \mathbb{E}^{β}.
future work Study (a polynomial part of) \mathbb{E}^{β}.

- generators and relations?
- Is this graded?
- convolution product? $\mathbb{E}^{\beta}-\operatorname{Mod} \times \mathbb{E}^{\beta^{\prime}}-\operatorname{Mod} \rightarrow \mathbb{E}^{\beta+\beta^{\prime}}-\operatorname{Mod}$

Thank you for your attention!

