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Abstract — This paper presents an end-to-end model of Deep
Convolutional Recurrent Network (DCRN) for recognizing offline
handwritten Japanese text lines. The end-to-end DCRN model has
three parts: a convolutional feature extractor using Deep
Convolutional Neural Network (DCNN) to extract a feature
sequence from a text line image; recurrent layers employing a
Deep Bidirectional LSTM to predict pre-frame from the feature
sequence; and a transcription layer using Connectionist Temporal
Classification (CTC) to convert the pre-frame predictions into the
label sequence. Since our end-to-end model requires a large data
for training, we synthesize handwritten text line images from
sentences in corpora and handwritten character patterns in the
Nakayosi and Kuchibue database with elastic distortions. In the
experiment, we evaluate the performance of the end-to-end model
and the effectiveness of the synthetic data generation method on
the test set of the TUAT Kondate database. The results of the
experiments show that our end-to-end model achieves higher than
the state-of-the-art recognition accuracy on the test set of TUAT
Kondate with 96.35% and 98.05% character level recognition
accuracies without and with the generated synthetic data,
respectively.

Keywords — Handwritten Japanese Text Recognition, End-to-
End Model, CNN, BLSTM, Synthetic Image Generation

I. INTRODUCTION

The offline handwritten Japanese recognition is a still big
challenging problem because of the large character set; varieties
of characters mixed of thousands of Kanji characters of Chinese
origin, two sets of phonetic characters, alphabets, numerals,
symbols, etc.; the fact that Kanji radicals are often characters as
themselves; diversity of writing styles and multiple-touches
between characters. Most of the traditional offline handwritten
Japanese/Chinese text recognition methods [1, 2, 3] use some
pre-segmentation of text lines before individually recognizing
each character and integrating linguistic and geometric context.
However, pre-segmentation of text lines is quite costly and the
errors due to this process directly affect the performance of the
whole system.

In recent years, Deep Neural Networks have been proven to
be very powerful models and achieve the state-of-the-art
accuracies on many computer vision tasks such as
Convolutional Neural Network (CNN) for image recognition [4],
Long Short-Term Memory (LSTM) for sequence prediction and
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labeling tasks [5]. Graves et al. [6] introduced Connectionist
Temporal Classification (CTC) for labeling unsegmented
sequence data. They also combined Bidirectional LSTM and
CTC to build a connectionist system for unconstrained
handwriting recognition [7]. Base on Deep Neural Network and
CTC, many segmentation-free methods [8, 9, 10] have been
proposed and proven to be very powerful for handwriting
recognition tasks. R. Messina and J. Louradour [9] combined
Multi-Dimensional LSTM (MDLSTM) and CTC to build an
end-to-end trainable model for offline handwritten Chinese text
recognition. However, the Multi-Dimensional LSTM networks
are quite computationally expensive and J. Puigcerver [11]
provided multiple evidences that Multi-Dimensional LSTM
may not be necessary to achieve good accuracy for handwriting
recognition tasks. In this paper, we propose an end-to-end model
of DCRN for offline handwritten Japanese text recognition. It
consists of 3 components, the convolutional feature extractor,
the recurrent layers, and a transcription layer.

Deep Neural Networks, especially end-to-end models
typically require a large data for training. However, for many
handwriting datasets, especially handwritten Japanese character
and text datasets, the number of data is not enough, so that it is
necessary to apply data argumentation. Many data
argumentation methods for handwriting datasets have been
proposed by modifying the original data such as affine
transformations [12, 13], nonlinear combinations [13, 14] and
Random warp grid distortion [15]. However, such method just
modifies the original data, can’t gain the real text line image. In
this work, we propose a synthetic pattern generation method
which synthesize handwritten text line images from sentences in
corpora and handwritten character patterns in the Nakayosi and
Kuchibue [16] database with elastic distortions.

The rest of this paper is organized as follows: Session II
presents the overview of the end-to-end DCRN model. Session
III describes the synthetic pattern generation method. Session IV
reports our experimental results and analysis. Session V draws
conclusions.

II. OVERVIEW OF THE END-TO-END DCRN MODEL

We propose an end-to-end model of Deep Convolutional
Recurrent Network (DCRN) for recognizing offline handwritten
Japanese text lines. Our end-to-end model consists of 3



components, the convolutional feature extractor, the recurrent
layers, and a transcription layer, from bottom to top as shown in
Fig. 1.
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Fig. 1. Network architecture of end-to-end DCRN model. The network
consists of three components: 1) Convolutional feature extractor; 2) Recurrent
layers; 3) Transcription layer.

Feature
extractor

A. Preprocessing
Firstly, all of the text line images are scaled to the same

height of size before recognized by the end-to-end DCRN model.

This is necessary because in our model the feature dimension of
feature sequence which extracted by the convolutional feature
extractor is constant since deep BLSTM expects a fixed-size
feature dimension. After resizing, in order to manage the noisy
and complicated background, the text line images are converted
into binary images by Otsu thresholding algorithm [17].

B. Convolutional feature extractor

Convolutional neural networks (CNNs) have been proven to
be very powerful visual models and achieve the state-of-the-art
accuracies on some tasks of computer vision such as image
recognition [18] and feature representation [19]. S. Ioffe and C.
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Szegedy [20] introduced a technique called Batch normalization
which normalizes the summed input to a neuron over a mini-
batch of training cases by calculating a mean and a variance
from the distribution of the summed input to that neuron. This
technique is demonstrated to significantly reduce the training
time in feed-forward neural networks.

In the End-to-end DCRN model, we employ a CNN network
to build a convolutional feature extractor. The CNN network is
constructed by taking the convolutional, max-pooling layers
from a standard CNN model (fully connected and softmax layers
are removed). The Leaky ReLu [21] activation is applied in all
convolutional layers. Batch normalization is applied between
convolutional layer and Leaky ReLu activation. We apply this
convolutional feature extractor to an input image of size w X
h X ¢ (where c is the color channels of image), resulting in a
multi-channel output of dimension w’ X h' X k, where k is the
number of feature maps in last convolutional layer, w'and h'
depend on the w and % of input images and the amount of pooling
layers in the CNN network. Then we pass the w' features of
dimension h' X k to the recurrent layers. Since the height of
input images is fixed, the dimension h' X k of each feature is the
same.

C. Recurrent layers

Recurrent neural networks (RNNs) are connectionist models
containing a self-connected hidden layer. The benefits of RNNs
are allowing information of previous inputs to remain in the
network’s internal states and the ability to make use of previous
context. In the traditional RNNs, however, the vanishing
gradient problem was recognized [22]. Long Short-Term
Memory (LSTM) [5] is a special kind of the RNN architecture
designed to address the vanishing gradient problem which is
capable of learning long-term dependencies. The standard
LSTM can only use past contextual information in one direction.
For many tasks such as handwritten recognition, however, it is
useful to have access to future as well as past contextual
information in both directions. This can be overcome by using
Bidirectional LSTM (BLSTM [5]) that is able to access context
in both directions along the input sequence.

In our end-to-end DCRN model, the recurrent layers are built
on top of the convolutional feature extractor to predict a label
distribution for each frame of the feature sequence extracted
from the previous component. The recurrent layers consist of the
Deep Bidirectional LSTM layers which take the feature
sequence from the convolutional feature extractor as the input.
In the last LSTM layer, each time step of feature sequence is
followed by a fully connected linear layer which converts the
output feature dimension to the size of the total character set
(plus 1 for CTC blank character). Finally, a softmax layer is
placed at the end to generate the label probability vector at each
time step.

D. Transcription layer

At the top of our end-to-end DCRN model, the transcription
layer decodes the pre-frame predictions made by the recurrent
layers into the final label sequence. Mathematically, decoding is
to find the label sequence with the highest probability
conditioned on the pre-frame predictions. To obtain the



conditional probability, we employ a CTC [6] layer as the
transcription layer.

For decoding, we apply the CTC beam search [23] with 100
for the beam width combined with a linguistic context to obtain
the final label sequence with the highest probability conditioned.
In this work, we employ the tri-gram probability [24] as the
linguistic context. The tri-gram probability P(C;|C;_,, C;_1) is
calculated from the corpus. It is reduced to unigram or bi-gram
when C; is the first or second character.

III. TEXT LINE IMAGE GENERATION

A. Synthetic Data Generations

Since the end-to-end model requires large data for training,
we propose a synthetic pattern generation method which
synthesizes handwritten text line images from sentences in
corpora and handwritten character patterns in the Nakayosi and
Kuchibue [16] database with local elastic distortion and global
elastic distortion model.

We generate the synthetic handwritten text line dataset by
taking the following 6 steps:

1. Get a sentence from the listed sentences of corpus.

2. Randomly choose a writer from the listed writers of the
handwritten character pattern database.

3. For each character of the sentence in the step 1, a
handwritten image of this character is randomly chosen
from the writer selected in the step 2.

4. Apply a local elastic distortion to each handwritten
pattern in the step 3.

5. Synthesize a handwritten text line image from the
sentence selected in the step 1 and elastically distorted
handwritten character images in the step 4 with random
spacing between each character image.

6. Apply a global elastic distortion to the generated
synthetic text line image.

B. Local Elastic Distortion

The local elastic distortion model performs an affine
transformation on each handwritten character image before
concatenating them into a synthetic text line image. In the local
elastic distortion model, we employ shearing, rotation, scaling,
translation transformations.

Shear is a transformation that slants the shape of an object.
There are two shear transformations include X-shear and Y-
shear (vertical and horizontal shear). They are calculated by eq.
(1) and eq. (2).

Translation is a transformation that moves an object to a
different position without rotation. Scaling is a transformation
that changes the size of an object. The translation and scaling
transformations are shown in eq. (3) and eq. (4).

Rotation is a transformation that rotates the object at
particular angle a from its origin. The rotation transformation is
shown in eq. (5).
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Here, (x',y") is the new coordinate of a point (x, y)
transformed by any transformation model, a is the angle of the
shear and rotation transformations, £ is the scaling factor of the
scaling transformation, the pair (ty, t,) is the shift vector of the
translation transformation. The parameters of the local elastic
distortion model is presented by [(pSH, a),
(01t ty), (Dsc, k), (PR, ©)], Where pgy, pr, psc and py are
the probabilities of applying the shearing, translation, scaling
and rotation transformations, respectively, a is from —8°to
8° with a step of 0.1, t, and t,, are from 3 to 5 pixels with a step
of 1, and k is from 0.8 to 1.2 with a step of 0.01.

Fig. 2 show examples of the local elastic distortion model
witha = 8°, k=0.9 and t, = t,, = 3.

% F

Original Right-Rotation Left-Rotation
Scaling X-Shear Y-Shear

Fig. 2. Examples of local elastic distortion by shearing, rotation and scaling
transformations.

C. Global Elastic Distortion

Global elastic distortion model performs affine
transformation on a whole text line image generated by
concatenating isolated handwritten character images. In the
global elastic distortion, we employ the rotation and scaling
transformations. The rotation and scaling transformations is
similar to the local elastic distortion. The parameters of the
global elastic distortion are presented by [(psc, k), (Pg, 0],
where pgc and py are the probabilities of applying the scaling
and rotation transformations, respectively, & is the scaling factor
and from 0.8 to 1.2 with a step of 0.01, and « is the angle of the
global rotation transformation and from —5° to 5° with a step
of 0.1.

Fig. 3 show examples of the global elastic distortion by the
scaling and rotation transformations.
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Fig. 3. Examples of global elastic distortion by scaling and rotation
transformations.

D. Synthetic Handwritten Text Line Dataset

We employ the sentences of Nikkei newspaper corpus and
Asahi newspaper corpus and the handwritten character database,
Nakayosi and Kuchibue [16] to generate the Synthetic
Handwritten Text Line Dataset (SHTL). Nikkei corpus consists
of about 1.1 million sentences collected from Nikkei News and
Asahi corpus consists of about 1.14 million sentences collected
Asahi News. We randomly choose 30,000 sentences which
contain less than 30 characters from each corpus. Since it make
sure that the end-to-end model can be trainable by SHTL. SHTL
consists about 60,000 of synthetic handwritten text line images.
Fig. 4 show samples of generated synthetic text line image in the
SHTL dataset.

SUELUSIELE DE - R Nak v L[ 23

121703 R4 Bvimb B+ 2 65As B AL 541,
FA a4t BOFfRarcyay 1R SRR a el (G,
Beihg P AtaT BEk EaeRakofs i  BhiBa.
FBUBHR SR BB 0L THIE B W E 12 A,

AL AR SRV AEL BV AL -
Fig. 4. Samples of generated synthetic data.

IV. EXPERIMENTS

To evaluate the performance of the proposed end-to-end
DCRN model and the effectiveness of the synthetic data
generation method, we conducted experiments on standard
benchmarks for offline handwritten Japanese text recognition.
The information of handwritten Japanese text databases is given
in Sec. A, the implementation details are described in Sec B, the
results of the experiments are presented in Sec. C and the
correctly recognized and misrecognized samples are shown in
Sec. D.

A. Offline Handwritten Japanese Text Databases

TUAT Kondate database [25] is a database of online
handwritten patterns mixed of text, figures, tables, maps,
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diagrams and so on. It was turned to offline patterns by
thickening strokes by constant width. The Japanese portion of
Kondate was collected from 100 Japanese writers and the
horizontal Japanese text lines stored in Kondate were used in our
experiments. 13,685 horizontal Japanese text lines were split
into three parts: first one consisting of 11,487 text line images
collected from 84 Japanese writers were used as the training set,
the second one consisting of 800 text line images collected from
6 Japanese writers were used as the validation set, the last one
consisting of 1,398 text line images collected from 10 Japanese
writers were used as the test set. They are summarized in Table
L

TABLE L. The detail of information of Kondate database.
Kondate
Train set Valid set Test set
Number of writers 84 6 10
Number of samples 11,487 800 1,398
B. Implementation Details
The architecture of our CNN model used in the

convolutional feature extractor is shown in Table II. It consists
of 8 convolutional layers. Batch normalization is applied after
the 2nd, 4th, 6th and 8th convolutional layers followed by Max-
Pooling layers. The Leaky ReLu [21] activation function is
applied in all convolutional layers.

TABLE IL. Network configuration of our CNN model. ‘maps’, k’, ‘s’
and ‘p’ denote the number of kernels, kernel size, stride and padding
size of convolutional layers respectively.

Type

Configurations

Input

96xw image

Convl - LReLu

#maps:32, k:3x3, s:1, p:1

Conv2 - Batch Norm - LReLu

#maps:32, k:3x3, s:1, p:1

MaxPooling1

#window:2x2, s:2

Conv3 - LReLu

#maps:64, k:3x3, s:1, p:1

Conv4 - Batch Norm - LReLu

#maps:64, k:3x3, s:1, p:1

MaxPooling2

#window:2x2, s:2

Conv5 - LReLu

#maps:128, k:3x3, s:1, p:1

Conv6 - Batch Norm - LReLu

#maps:128, k:3x3, s:1, p:1

MaxPooling3

#window:2x2, s:2

Conv7 - LReLu

#maps:256, k:3x3, s:1, p:1

Conv8 - Batch Norm - LReLu

#maps:256, k:3x3, s:1, p:1

MaxPooling4

#window:2x2, s:2

At the recurrent layers, we employ Deep BLSTM network
with 128 hidden nodes of three layers. In order to prevent
overfitting when training the model, the dropout (dropout
rate=0.8) is also applied in each layer of Deep BLSTM. A fully
connected layer and a softmax layer with the node size equal to
the character set size (n=3347) are applied after each time step
of Deep BLSTM network.

The end-to-end DCRN model is trained using stochastic
gradient descent with the learning rate of 0.001 and the
momentum of 0.9. The training process stops when the



recognition accuracy of validation set do not gain after 10
epochs. The end-to-end DCRN model is trained by two datasets;
the first is the training set of TUAT Kondate and the second is
the training set of TUAT Kondate combining the SHTL Dataset.
We call the former End-to-End and the latter End-to-End_SHTL.
We use the validation set and test set of TUAT Kondate to
validate and test the performance of End-to-End and End-to-
End_SHTL.

C. Results of Experiments

In order to evaluate the performance of the end-to-end
DCRN model and the effectiveness of the synthetic data
generation method, we employ the terms of Label Error Rate
(LER) [6] and Sequence Error Rate (SER) [6] that are defined
as follows:

LER(h,S'):l > ED(h(x),z)

(x,2)eS’

3 0 if h(x)=z

100
(res |1 otherwise

|5

where Z is the total number of target labels in S’ and ED(p, q) is
the edit distance between two sequences p and g.

SER(h,S")

The first experiment evaluated the performance of the end-
to-end DCRN model and the effectiveness of the synthetic data
generation method without using the linguistic context. Table I11
shows the recognition rate on the validation and test sets. End-
to-End obtained LER of 3.65% and SER of 17.24% on the test
set. The results imply that the end-to-end DCRN model
substantially outperforms the state-of-the-art recognition
accuracy in the previous model DCRN-s [8]. End-to End SHTL
achieved LER of 1.95% and SER of 14.02%. These results show
that the recognition accuracy is further improved when we use
the SHTL dataset to train the end-to-end DCRN model.

TABLE III. Label Error Rate (LER) and Sequence Error Rate (SER)
on Kondate.
Model LER SER

Valid set Test set Valid set Test set
DCRN-f&s [8] 11.74% 6.95% 39.33% 28.04%
DCRN-s [8] 11.01% 6.44% 37.38% 25.89%
End-to-End 5.22% 3.65% 24.47% 17.24%
End-to-End_SHTL 3.62% 1.95% 21.87% 14.02%

Secondly, we evaluated the performance of the end-to-end
DCRN model and the effectiveness of the synthetic data
generation method with the linguistic context [24]. Table IV
shows the recognition rate of the end-to-end DCRN model on
the test set when combined with the linguistic context. It is
compared with the previous segmentation based method [1] and
the previous models DCRN-s and DCRN-f&s [8] with the
linguistic context. The results show that the end-to-end DCRN
model is superior to the segmentation based method and its
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recognition accuracy is further improved when the linguistic
context is integrated.

TABLE IV. Label Error Rate (LER) and Sequence Error Rate (SER)
on test set of Kondate when combined with the linguistic context.
Model Test set
LER SER
Segmentation based [1] 11.2% 48.53%
DCRN-f&s [8] 6.68% 26.97%
DCRN-s [8] 6.10% 24.39%
End-to-End 3.52% 16.67%
End-to-End_SHTL 1.87% 13.81%

For the convergence of training, our end-to-end DCRN
model achieves convergence after 39 epochs for End-to-End and
31 epochs for End-to-End_SHTL compared with 110 epochs for
CNN and about 50 epochs for BLSTM&CTC of DCRN-s in
previous work [8]. Fig. 5 shows the label error rate achieved
after each epoch when training the End-to-End, End-to-
End_SHTL, DRCN-s [8] and DRCN-f&s [8].

——DCRN-s ——DCRN-f&s End-to-End End-to-End_SHTL

100
90
80
70
60
50

LER(%)

40
30
20
10

0

~

1 6 11 16 21 26

Number epochs

Fig. 5. LER on the validation set after each epoch when training DCRN-s
[8], DCRN-f&s [8], End-to-End and End-to-End SHTL.

D. Correctly recognized and misrecognized samples

( kentaro- @ handts €1, tuat ac.je )

‘ (kentaro—y@hands. ei. tuat. ac. jp) ‘
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| UBsT O SRALT, AP MR K oD orebliflTin. |
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[ 4 BTREEHIL, ZOBTRETAN* Y arins. |

e Ahorripe EdoicesFohie Iy

| FESROREE L~ TRADZLEDATRLLTET |

7532 -0033 FERIZNE 5 TETE 103

| ¥532-0033 KRR RFAHIT HIH 145 |

a). Correctly recognized samples.
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a). Misrecognized samples.

Fig. 6. Correctly recognized and misrecognized samples by End-to-End_SHTL.

Fig. 6 shows some correctly recognized and misrecognized
samples by End-to-End_SHTL whose SER is about 14.02%. For
each misrecognized sample, the upper image is an input
handwritten text line image and the text bounded by the lower
blue rectangular shows the ground-truth followed by “->” and
the recognition resulted. There are a total of 196 misrecognized
samples among 1398 samples in the test set. Most of them are
missing some characters in the ground-truth.

V. CONCLUSION

In this paper, we presented the end-to-end DCRN model for
recognizing offline handwritten Japanese text lines. We
proposed the method of synthesizing handwritten character
images combining local and global elastic distortion models for
generating handwritten text line images. Following the
experiments on the test set of TUAT Kondate, the end-to-end
DCRN model archived the 96.35% and 98.05% character level
recognition accuracy without and with the SHTL dataset,
respectively. The following conclusions are drawn: 1) the end-
to-end DCRN model substantially outperforms the previous
model DCRN-s and the traditional segmentation-based method
[1, 8]; 2) the recognition accuracy is improved by using the
SHTL dataset to training the end-to-end DCRN model; 3) the
recognition rate is further improved when combined with the
linguistic context.
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