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Abstract - This paper presents a model of Deep Convolutional 
Recurrent Network (DCRN) for recognizing offline handwritten 
Japanese text lines without explicit segmentation of characters. 
Most of traditional offline handwritten Japanese text recognizers 
perform segmentation of text image into characters before 
individually recognizing each character. Although segmentation 
by recognition and context are employed to recover from 
segmentation errors, errors made at this stage directly make an 
impact on the performance of the whole system. The DCRN 
model consists of three parts: a convolutional feature extractor 
using Convolutional Neural Network (CNN) and sliding window 
to extract features from text image; recurrent layers using 
BLSTM to predict pre-frame from an input sequence; and a 
transcription layer using a CTC-decoder to translate the 
predictions into the label sequence. Experimental results on the 
database: TUAT Kondate database demonstrates the 
effectiveness of the proposed method. 

Keywords - CNN, BLSTM, CTC, sliding window, segmentation-
free 

I. INTRODUCTION 
The handwritten Japanese text recognition is still a big 

challenging problem and has been receiving much attention 
from numerous researchers. However, the existing systems are 
still far from perfection because of the large character set; 
varieties of characters mixed of thousands of Kanji characters 
of Chinese origin, two sets of phonetic characters, alphabets, 
numerals, symbols, etc.; diversity of writing styles and 
multiple-touches between characters. Most of the traditional 
offline handwritten Japanese/Chinese text recognizers [3][4] 
perform segmentation of text image into characters before 
individually recognizing each character and integrating 
linguistic and geometric contexts. However, errors due to 
segmentation directly affect the performance of the whole 
system. In recent years, Deep Neural Network is demonstrating 
surpassing performances than the state-of-the-art accuracies on 
many tasks such as Convolutional Neural Network for Image 
recognition and feature extraction [6][15], Long Short Term 
Memory Recurrent Neural Networks (LSTM RNNs) for 

sequence prediction and labeling tasks [12][13]. Graves et al.
[1] combined Bidirectional LSTM (BLSTM) and the 
Connectionist Temporal Classification (CTC[2]) to build a 
Connectionist System for unconstrained handwriting 
recognition. Base on Deep Neural Network, many 
segmentation-free methods [10][11] have been studied and 
have demonstrated to be powerful in image-based sequence 
recognition tasks. R. Messina and J. Louradour [10] combined 
Multi-Dimensional Long-Short Term Memory Recurrent 
Neural Network (MDLSTM-RNN) and the CTC to build an 
end-to-end trainable model for offline handwritten Chinese text 
recognition. However, this method does not take advantage of 
CNN for feature extraction and an end to end model is usually 
hard to converge and time-consuming (~400 epochs) when 
training network because of many parameters. Suryani et al. 
[11] proposed a method combining pretrained CNN and 
BLSTM followed by a Hidden Markov Model (HMM) 
alignment for offline handwritten Chinese text recognition. 
However, CTC alignment based on probability is demonstrated 
that achieves higher performance than HMM alignment  for 
sequence prediction and labeling tasks [1][2]. 

In this paper, we propose a model of Deep Convolutional 
Recurrent Network (DCRN) for offline handwritten Japanese 
text recognition. It consists of three parts: a convolutional 
feature extractor using CNN and sliding window to extract 
features from text image; recurrent layers using BLSTM to 
predict pre-frame from an input sequence; and a transcription 
layer using a CTC-decoder to translate the predictions into the 
label sequence. 

The rest of this paper is organized as follows: Session II 
presents the architecture of our proposed model, DCRN. 
Session III reports our experimental results and analysis. 
Session IV draws conclusions. 

II. DEEP CONVOLUTIONAL RECURRENT NETWORK 
The network architecture of DCRN consists of 3 

components, including the convolutional feature extractor, the 
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recurrent layers, and a transcription layer, from bottom to top 
as shown in Fig. 1.  

From the bottom of the DCRN, the convolutional feature 
extractor extracts a feature sequence from an input image, the 
recurrent layers at the top of the convolutional feature extractor 
predict each frame of the feature sequence output by the 
convolutional feature extractor. At the top of the DCRN, the 
transcription layer translates the pre-frame predictions by the 
recurrent layers into the final label sequence. 

 
Fig. 1. Network architecture of DCRN. The network consists of three 

components: 1) Convolutional feature extractor, which extracts a feature 
sequence from an input image; 2) Recurrent layers, which predict a label 
distribution for each feature; 3) Transcription layer, which translates the per-
frame predictions into the final label sequence. 

A. Convolutional feature extractor 
A Deep convolutional neural network is demonstrated that 

it is a powerful visual model and achieves the state-of-the-art 
accuracy on some tasks such as image recognition[6].  Deep 
Maxout [9] CNN combined with “dropout” [14] is also 
powerful for computer vision tasks [9].  

In the DCRN model, the component of convolutional 
feature extraction is constructed by taking the convolutional, 
max-pooling and full-connected layers from a standard CNN 
model (softmax layer are removed). Maxout units [9] is 
employed after each convolutional and full-connected layer 
and “dropout” is only used in full-connected layers. Such 
components are used to extract a feature sequence from an 
input image by sliding a sub-window through the text image. 
Before being fed into the component, all the text images need 

to be scaled to the same height in order to have the same size 
of the input image for CNN. Then, the feature sequence is 
extracted from the text image by the convolutional feature 
extractor, which is the input of the recurrent layer. Each 
feature is 200 elements of a vector and is a time step of input 
for the recurrent layers. The weights of the CNN model in the 
convolutional feature extractor is pretrained by the TUAT 
Nakayosi and Kuchibue, handwritten Japanese character 
databases [7]. 

B. The Recurrent layers 
 Recurrent neural networks (RNNs) are connectionist 
models containing a self-connected hidden layer. The recurrent 
connection allows information of previous inputs to remain in 
the network’s internal states; therefore it makes use of past 
contextual information. However, the traditional RNNs suffer 
from the gradient vanishing and exploding problem.  

 Long Short-Term Memory (LSTM) is a special kind of 
RNN architectures designed to address the vanishing gradient 
problem, which is capable of learning long-term dependencies. 
A LSTM layer consists of a set of recurrently connected blocks, 
known as memory blocks. Each block contains a set of internal 
units, known as cells, whose activation is controlled by three 
multiplicative gate units. The effect of the gates is to allow the 
cells to store and access information over long periods of time. 
For many tasks such as handwritten text recognition, it is 
useful to use future as well past contextual information. 
However, the standard LSTM can only use past contextual 
information in one direction. This can be overcome by using 
Bidirectional LSTM (BLSTM [12]) that can learn long-range 
context dynamics in both input directions. 

 In our proposed DCRN model, the deep BLSTMs are built 
on top of the convolutional feature extractor, as the recurrent 
layers to predict a label distribution for each feature of the 
feature sequence extracted from the previous component. 

C. Transcription layer 
CTC is a specific loss function designed for the sequence 

labeling tasks where it is difficult to segment the input 
sequence to the segment that exactly matches a target 
sequence. CTC performs alignment of a probability output 
sequence to the label sequence. As a result, the system does 
not need to segment the input sequence for training. To avoid 
the difficulty of segmentation in handwritten text recognition 
systems, we employ CTC to be built on top of the recurrent 
layers, as the transcription layer in our framework. 

We denote the character set as { }C C blank′ = ∪ , where C 
is a fixed set of labels and ‘blank’ represents no label. For an 
input sequence 1 2, , , Tx x x x=  of length T, the conditional 
probability of a path π  through the lattice of output labels over 
all the time steps is calculated by multiplying the probabilities 
of labels along this path: 

 
1

( | ) ( , | )
T

t
t

p x p t xπ π
=

= ∏   (1) 

where tπ  is the label of the pathπ  at time t. 
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A label sequence is obtained from a path by a reduction 
process denoted as B, which firstly removes repeated labels, 
then removes blanks in this path (e.g. B(_cc_a_tt_) = 
B(_c_aa_t_) = cat). The probability of a label sequence l from 
an input sequence x is the total probability of all the paths, 
where each path is reduced into this label sequence by B. It is 
shown as follows: 

 ( )
( )

( )
:

| |
B l

p l x xp
π π

π
=

=   (2) 

Applying the CTC forward-backward algorithm 
[2], ( | )p l x in (2) is obtained efficiently. For decoding, we 
could obtain the best label by:  

( ) ( )max max max; arg max , 1...t t
k

k
l B y t Tπ π= = =   

This is obtained without explicitly segmenting the input 
sequence. 

III. EXPERIMENTS 
To evaluate the performance of the proposed DCRN model, 

we conducted experiments on standard benchmarks for  
handwritten Japanese text recognition. The information of 
handwritten Japanese text datasets are given in Sec. A and Sec. 
B, the implementation details are described in Sec. C, the 
results of the experiments are presented in Sec. D and the 
misrecognized samples are shown in Sec. E. 

A. Offline Handwritten Japanese Text Datasets 
TUAT Kondate database [5] is a database of online 

handwritten patterns mixed with text, figures, tables, maps, 
diagrams and so on. It was turned to offline patterns by 
thickening strokes by constant width. The Japanese portion of 
Kondate was collected from 100 Japanese writers and the 
horizontal Japanese text lines stored in Kondate were used in 
our experiments. 13,684 horizontal Japanese text lines were 
split into two parts: first one consisting of 12,287 text lines 
collected from 90 Japanese writers were used as the training 
set, the second one consisting of 1,398 text lines collected 
from 10 Japanese writers were used as the testing set. We 
randomly split the training set into two group, with 
approximately 90% for training and remainder for validation. 
They are summarized in Table I. 

TABLE I. The detail of information of Kondate database. 

 Kondate 

Train and valid sets Test set 

Number of writers 90 10 

Number of samples 12,287 1,398 

 
B. Offline Handwritten Japanese Character Datasets 

The weights of the CNN model in the convolutional 
feature extractor is pretrained by the TUAT Nakayosi and 
Kuchibue handwritten Japanese character databases [7]. 
Nakayosi contains samples of 163 writers, 10,403 character 
patterns covering 4,438 classes per writer. Kuchibue contains 

handwritten samples of 120 writers, 11,951 character patterns 
covering 3,345 classes per writer. The summary of the 
Nakayosi and Kuchibue databases are shown in Table II. They 
are turned to offline patterns again by thickening stroke with 
constant width. In this work, we experimented with 3,345 
classes of JIS level-1 Kanji characters (2965 classes) and 
kana, alpha-numerals, symbols and so on (380 classes) for 
pretraining the CNN model. We used the samples of Nakayosi 
for training and the samples of Kuchibue for testing. We 
randomly split the training set into two group, with 
approximately 90% for training and remainder for validation. 

TABLE II. Summary of Nakayosi and Kuchibue databases. 

 Nakayosi Kuchibue 

Number of writers 163 120 

Number of classes 4,438 3,345 

Number of samples 1,695,689 1,435,440 

 
C. Implementation Details 

The detailed architecture of our CNN model used in the 
convolutional feature extractor is listed in Table III. It contains 
seven learned layers - four convolutional layers alternatively 
by four max-pooling layers, two full-connected layers and a 
softmax layer finally (3345 class). Each convolutional and 
full-connected layer is followed by Maxout units [9], using the 
group size of 2. Firstly, the CNN model is pretrained by using 
stochastic gradient descent with a batch size of 64 samples 
with the learning rate of 0.01 and the momentum of 0.95 on 
GPU. After training the CNN model, we remove just the 
softmax layer or both the full connected layers and the 
softmax layer from the CNN model to use the remaining 
network as the convolutional feature extractor. We call the 
former DCRN-s and the latter DCRN-f&s. 

TABLE III. Network configuration of our CNN model. ‘maps’, ‘k’, 
‘s’ and ‘p’ denote the number of kernel, kernel size, stride and 
padding size of convolutional layers respectively. ‘group’ denotes  
the group size of Maxout units. 

Type Configurations 

Input 96×96 image 

Convolution - Maxout #maps:32, k:5×5, s:1, p:0, group:2 

MaxPooling #window:2×2, s:2 

Convolution - Maxout #maps:32, k:3×3, s:1, p:0, group:2 

MaxPooling #window:2×2, s:2 

Convolution - Maxout #maps:64, k:3×3, s:1, p:0, group:2 

MaxPooling #window:2×2, s:2 

Convolution - Maxout #maps:64, k:5×5, s:1, p:0, group:2 

MaxPooling #window:2×2, s:2 

Full-connected - Maxout #nodes:400, group:2 

Full-connected - Maxout #nodes:400, group:2 

Softmax #nodes: 3345(number class) 

 
At the recurrent layers, we employ Deep BLSTM network 

with 256 nodes of two layers. The recurrent layers and the 
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transcription layer are trained by using online steepest decent 
with the learning rate of 0.0001 and the momentum of 0.9. All 
of the text line images of the Kondate database are scaled to 
the same height before used to train the DCRN models. 

D. Results of Experiments 
The CNN model was pretrained for 110 epochs and the 

training process was stopped when the accuracy rate did not 
improve for 10 epochs with the result that 95.17% of accuracy 
rate was achieved for the test set. The results are summarized 
in Table IV. 

TABLE IV. The accuracy of CNN model. 

Model Validation set Testing set 

CNN model 97.6% 95.17% 
 

In order to evaluate the performance of the DCRN models, 
the performance is measured in terms of Label Error Rate 
(LER) [2] and Sequence Error Rate (SER) [2] that are defined 
as follows: 

( ) ( )
(x,z) S

1, h(x), zLER h S ED
Z ′∈

′ =  

( )
( , )

0 ( )100,
1x z S

if h x z
SER h S

otherwiseS ′∈

=
′ =

′
  

Where Z is the total number of target labels in S’ and ED(p, q) 
is the edit distance between two sequences p and q. 

The recurrent layers and the transcription layer components 
of the DCRN-s model were trained for 50 epochs, and then the 
label error rate of 6.44% and the sequence error rate of 25.89% 
were obtained in the test set. For DCRN-f&s, the recurrent 
layers and the transcription layer components were trained for 
40 epochs with the result of  6.95% of the label error rate and 
28.04% of the sequence error rate in the test set. The results 
imply that the DCRN-s model, the convolutional feature 
extractor made by only removing the softmax layer from the 
CNN model, works better than DCRN-f&s, the convolutional 
feature extractor made by removing both the full connected 
layers and the softmax layer from the CNN model. Table V 
presents the results of our systems and the segmentation based 
method [3] for the Kondate database [5]. It shows that the 
DCRN models significantly outperform the traditional method 
based on segmentation with linguistic context [3] for the 
Kondate database in both the label error rate and the sequence 
error rate although they don’t use any language model. 

TABLE V. Label Error Rate (LER) and Sequence Error Rate (SER) 
on Kondate. 

Model LER SER 

Valid set Test set Valid set Test set 

DCRN-s 11.01% 6.44% 37.38% 25.89% 

DCRN-f&s 11.74% 6.95% 39.33% 28.04% 

Segmentation 
based [3] 

- 11.2% - 48.53% 

 

For the convergence of training, our network achieves 
convergence after 110 epochs for CNN and about 50 epochs 
for BLSTM&CTC compared with approximately 400 epochs 
for an end to end model MDLSTM-RNN [10]. Fig. 2 presents 
the label error rate achieved after each epoch when training the 
recurrent layers and the transcription layer components of 
DRCN-s and DRCN-f&s. 

 
Fig. 2. Label error rates on the validation set after each epoch when 

training the recurrent layers and the transcription layer components of DCRN-
s and DCRN-f&s. 

E. Misrecognized samples 

 

 
Fig. 3. Some mispredicted samples by DCRN-s.  
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 There are a total of 362 misrecognized samples among 
1398 samples. Most of them are missing some characters in the 
ground-truth. Fig. 3 shows some misrecognized samples by 
DCRN-s whose sequence error rate is 25.89%. For each 
sample, the upper image is an input handwritten text line image 
and the text bounded by the lower blue rectangular shows the 
ground-truth and the recognition result separated by “->”. 

IV. CONCLUSION 
     In this paper, we presented a novel method of Deep 
Convolutional Recurrent Neural Network (DCRN) for 
recognizing offline handwritten Japanese text. The DCRN 
consists of three parts: the convolutional feature extractor, the 
recurrent layers and the transcription layer that directly 
recognize offline handwritten Japanese text without 
segmentation. Following the experiments on the test set of 
handwritten Japanese text database, TUAT Kondate, the 
DCRN-s with the convolutional feature extractor made by  
removing the softmax layer from the CNN model, obtained 
the label error rate of 6.44% and the sequence error rate of 
25.89% while the DCRN-f&s with the convolutional feature 
extractor made by removing both the full connected layers and 
the softmax layer from the CNN model, obtained the label 
error rate of 6.95% and the sequence error rate of 28.04% 
compared with the label error rate of 11.2% and the sequence 
error rate of 48.53% obtained by the traditional segmentation-
based method. The following conclusions are drawn: 1) 
DCRN-s works better than DCRN-f&s; 2) the DCRN models 
significantly outperform the traditional segmentation-based 
method in both the label error rate and the sequence error rate. 
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