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Abstract—Motivated by recent successes in neural machine 
translation and image caption generation, we present an end-to-
end system to recognize Online Handwritten Mathematical 
Expressions (OHMEs). Our system has three parts: a 
convolution neural network for feature extraction, a bidirectional 
LSTM for encoding extracted features, and an LSTM and an 
attention model for generating target LaTex. For recognizing 
complex structures, our system needs large data for training. We 
propose local and global distortion models for generating 
OHMEs from the CROHME database. We evaluate the end-to-
end system on the CROHME database and the generated 
databases. The experiential results show that the end-to-end 
system achieves 28.09% and 35.19% recognition rates on 
CROHME without and with the generated data, respectively. 

Keywords—Online Handwritten Mathematical Expression 
Recognition, End-to-End Model, Encoder-Decoder Model, Patterns 
Generation  

I. INTRODUCTION  
Recognition of online handwritten mathematical expression 

(OHME) is one of the current challenges concerning 
handwriting recognition. It can be divided into three main 
processes. First, a sequence of input strokes is segmented into 
hypothetical symbols (symbol segmentation). Then 
hypothetical symbols are recognized by a symbol classifier 
(symbol recognition). Finally, structural relations among the 
recognized symbols are determined and the structure of the 
expression is analyzed by a parsing algorithm in order to 
provide the most likely interpretation of an input OHME 
(structural analysis). The recognition problem requires not only 
segmentation and recognition of symbols but also analysis of 
two-dimensional (2D) structures and interpretation of the 
structural relations. Ambiguities arise in all stages of the 
process. 

Many approaches have been proposed for recognizing 
OHMEs especially during last two decades. They are 
summarized in the survey papers [1, 2] and the recent 
competition papers [3]. Most of them follow three 
interdependent processes as mentioned above. These processes 
can be handled independently [2] or jointly [4, 5, 6, 7]. In the 
following, we will review a few recent approaches participated 
in the recent Competition on Recognition of Online 
Handwritten Mathematical Expressions (CROHME).  

A system for recognizing OHMEs by using a top-down 
parsing algorithm was proposed by MacLean et al. [4]. The 
incremental parsing process constructs a shared parse forest 

that presents all recognizable parses of the input. Then, the 
extraction process finds the top to nth-most highly-ranked trees 
from the forest. By using horizontal and vertical order, this 
method reduces infeasible partitions and makes the method 
independent from stroke order. However, the worst-case 
number of sub-partitions that must be considered during 
parsing and the complexity of the parsing algorithm are still 
quite large as O(n4) and O(n4|P|), respectively. This system 
incorporates a correction mechanism to help users to edit 
recognition errors. 

A global approach allowing mathematical symbols and 
structural relations to be learned directly from expressions was 
proposed by Awal et al. [5]. During the training phase, symbol 
hypotheses are generated without using a language model. The 
dynamic programming algorithm finds the best segmentation 
and recognition of the input. The classifier learns both the 
correct and incorrect segmentations. The training process is 
repeated to update the classifier until the classifier recognizes 
the training set of OHMEs correctly. Furthermore, contextual 
modeling based on structural analysis of the expression is 
employed, where the models are learnt directly from 
expressions using the global learning scheme. 

A formal model for OHME recognition based on 2D 
Stochastic Context Free Grammar (SCFG) and Hidden Markov 
Model (HMM) was proposed by Alvaro et al. [6]. HMM uses 
both online and offline features to recognize mathematical 
symbols. The Cocke-Younger-Kasami (CYK) algorithm is 
modified to parse an input OHME in two dimensions (2D). 
They use the range search to improve time complexity from 
O(n4|P|) to O(n3logn|P|). To determine structural relations 
among symbols and sub-expressions, a Support Vector 
Machine (SVM) learns geometric features between bounding 
boxes.  

Le et al. presented a recognition method based on SCFG 
[7]. Stroke order is employed to reduce the search space and 
the CYK algorithm is employed to parse a sequence of input 
strokes. Therefore, the complexity of the parsing algorithm is 
still O(n3|P|), like that of the original CYK algorithm. They 
extended the grammar rules to cope with multiple symbol 
variations and proposed a concept of body box with two SVM 
models for classifying structural relations. The experiments 
showed the good recognition rate and practical processing 
time.  

A modified version of the Minimum Span Tree (MST) 
based parsing algorithm was presented by Hu et al. [8]. The 
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parser extracts MST from a directed Line-of-Sight graph. The 
time complexity of this parsing method is lower than the time 
complexity of the CYK parsing method. This parser achieved 
good result of structure analysis on OHME patterns assuming 
correct segmentation and symbol recognition.  

Mouchere et al. have been organizing CROHME for fair 
evaluation based on common databases. The above systems 
have shown good performance for the recent CROHME 
databases. However, they require ground-truth of OHMEs in 
different levels such as stroke, symbol, and structure. The 
collection and preparation of ground-truth for OHMEs are 
time-consuming tasks. The CROHME training set currently 
contains 8835 OHMEs from five different databases. It is hard 
to increase the number of OHMEs because it takes time and 
effort to collect and make ground-truth. Recently, Zhang et al. 
proposed a method using BLSTM for interpreting 2D 
languages such as OHMEs [9]. The method is an end-to-end 
model which requires only input data and their corresponding 
Latex or MathML. It is able to produce the result from input 
handwriting by using a BLSTM model. However, the 
performance is still lower than the above systems.  

Recently, an attention-based encoder-decoder model has 
been successful in machine translation [10] and image caption 
generation [11]. It outperforms traditional methods in many 
tasks of sequence to sequence problems. Y. Deng et al. 
extended this model to recognize images of printed MEs to 
LaTex [12]. This model shows an encouraging result on 
printed MEs patterns. For OHMEs, however, the problem is 
hard since symbols and structures of OHMEs have more 
variations and distortions than those of printed MEs.  

In this paper, we present an end-to-end system employing 
convolution neural network based on the attention-based 
encoder-decoder model. In our knowledge, this is the first work 
that employs the attention-based encoder-decoder for 
handwriting recognition. This system requires a large data for 
training, so we propose local and global distortion models to 
generate OHMEs from the CROHME database.  

The rest of this paper is organized as follows. The end-to-
end system for recognition of OHMEs is presented in Section 
2. The local and global distortion models for data generation 
are described in Section 3. The experimental results are 
presented and discussed in Section 4. Conclusions are drawn in 
Section 5. 

II. OVERVIEW OF THE END-TO-END RECOGNITION SYSTEM 
The structure of the end-to-end recognition system is 

shown in Figure 1. It has three parts: a convolution neural 
network for feature extraction from the image of an OHME, a 
bidirectional LSTM for encoding extracted features, and a 
LSTM and attention model for generating the target LaTex. 
They are described in the following sections. 

A. Feature Extraction by CNN 
Features are extracted from the image of an OHME by a 

convolution neural network which contains multiple layers of 
convolution and max-pooling layers. This is a standard CNN 
without recent techniques such as dropout, maxout, etc. An 
input image (H x W) is divided into (K x L) equal squares. In 

this paper, the size of square is (8 x 8). CNN takes a square and 
produces a feature vector with D elements. As a result, we 
obtain a sequence of feature vectors (F1, F2, ..., FKxL) from an 
input image (H, W), where (H, W) and (K, L) are image sizes 
and reduced sizes and D is the depth of features. The order of 
the feature extraction is from left to right and from top to 
bottom. 

B. Encoder 
An encoder encodes the sequence of feature vectors into a 

sequence of outputs (E1, E2, ..., EKxL). We employ a 
bidirectional LSTM which contains a forward LSTM and a 
backward LSTM.   

C. Decoder 
A decoder generates one symbol at a time. At each time 

step t, the decoder predict symbol yt based on the current 
output Ot, and the context vector Ct. Ot is calculated from the 
previous hidden state of the decoder ht 1, the previous decoded 
vector Ot-1, and the previous symbol yt-1. Ct is computed by 
weighted sum of the sequence of outputs and their weights 
produced by an attention model. 

 
Fig. 1. Structure of the end-to-end model 

III. PATTERNS GENERATION 
Patterns generation was successfully applied for Japanese 

handwritten text recognition by Chen et al. [13]. In this work, 
we extend their model into local and global distortions.  
OHMEs are distorted by combination of local and global 
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distortions. The local distortion is applied for symbols in an 
OHME, while the global distortion is applied for the whole 
OHME. The local distortion includes shear, shrink, 
perspective, shrink plus rotation, and perspective plus rotation. 
The global distortion includes scaling and rotation. The 
process of distortion is shown in Figure 2. First, all symbols in 
an OHME are distorted by the same distortion models. Then, 
the OHME is distorted by scaling and rotation models 
sequentially. The distortion models are described in the 
following sections. 

 
Fig. 2. Process of distortion model for patterns generation. 

A. Local Distortion 
Shear is a transformation that moves points in an axis by a 

distance increasing linearly with the other axis. The shear 
includes vertical and horizontal shear models. They are 
calculated by Eqs. (1) and (2). 

The shrink and perspective are both similar to the shear 
with different transformation equations. The vertical and 
horizontal shrink models are described in Eqs. (3) and (4) 
respectively. The vertical and horizontal perspective models 
are shown in Eqs. (5) and (6), respectively. 

The shrink plus rotation model applies shrink and rotation 
models sequentially. It is similar to the perspective plus 
rotation models. The rotation model is shown in Eq. (7). 

      (1)              (2) 

3) 

(4) 

(5) 

6) 

    (7) 

where (x’, y’) is the new coordinate transformed by any of 
local distortion models,  is the angle of shear, shrink, and 
perspective distortion models and  is the angle of rotation 
distortion model. The local distortion model and its 
parameters are presented by (id, , ) where id is the identifier 
of the distortion model from 1 to 5,  and  are from -10o to 
10o. 

Figure 3 show examples of local distortion models with  
= 10o and  = 10o

. 

  
 

Original Vertical shear Horizontal shear

 
 

 
Vertical shrink Horizontal 

shrink 
Vertical shrink 

+ rotation 
Horizontal 
shrink + 
rotation 

   
Vertical e 

perspective 
Horizontal 
perspective 

Vertical e 
perspective + 

rotation 

Horizontal 
perspective + 

rotation 
Fig. 3. Examples of local deformation by shear, shrink and perspective 

transformations. 

B. Global Distortion 
Global distortion distorts an OHME in baseline and size. 

We employ rotation and scaling models. The rotation model is 
similar to the local distortion. Scaling model is shown in Eq. 
(8). An example of the global distortion is shown in Figure 4. 

(8)  

where k is the scaling factor. The parameters of the global 
distortion model are presented by (k, ) where  is the angle of 
the global rotation distortion model, k is from 0.7 to 1.3, and  
is from -10o to 10o. 

  
Original Scaling factor = 0.7 and rotation 

angle = 7o

Fig. 4. Examples of global distortion by scaling and rotation models.

Shear

Shrink

Shrink + 
Rotation

Perspective

Perspective 
+ Rotation

Scaling Rotation

Local distortion

Global distortion

Distorted
ME

Original
ME
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C. Patterns generation 
To generate an OHME, we first randomize five variables 

(id, , , k, ). Then, all symbols in an OHME are distorted by 
local distortion models with (id, , ). Then, the OHME is 
distorted by the global distortion model with (k, ). Figure 5 
shows some generated OHMEs from the original OHME that 
appeared in Figure 3. 

 

 

 
Fig. 5. Sample OHMEs generated by combination of local and global 

distortion models. 
 

IV. EVALUATION 
First, we trained the end-to-end system by the CROHME 

training set. We repeatedly employ the training set to train the 
system. The training terminates when no increase of 
recognition rate is observed after 10 epochs. The resultant 
system is referred as the baseline system. Then, we created the 
two new training datasets G_CROHME1 and G_CROHME2 
by patterns generation which is detailed in the next section. For 
each generated dataset, we trained the end-to-end system with 
applying global distortions of different values for parameters at 
every epoch as shown in Figure 6(a). We also trained the 
system without global distortion as shown Figure 6(b). Namely, 
training with global distortions uses images from training set 
with global distortions applied at the beginning of every epoch 
while training without distortion employ the same images from 
the training set for every epoch. Then, we evaluated all the 
systems on the CROHME 2014 test set.  

 
(a) with global distortions (b) without global distortions 

Fig. 6.The training process of the end-to-end model with and without 
distortions. 

Next, we compared the performance of the best end-to-end 
system in the above with the other systems which participated 
CROHME 2014.  

A. Databases 
We use the CROHME 2014 database [11]. Organized at 

ICHFR 2014, CROHME 2014 was a contest in which OHME 
recognition algorithms competed. It allows the performance of 
the proposed system to be compared with others under the 
same conditions. There were seven participants. The 
CROHME 2014 database contains 8,835 OHMEs for training 
and 986 OHMEs for testing. The number of symbol classes is 
101. 

We generated more patterns by using the above-mentioned 
distortion models. We prepared two new training sets named as 
G_CROHME1 and G_CROHME2. G_CROHME1 and 
G_CROHME2 were created by generating 3 and 5 new 
OHMEs from every OHME in the CROHME training set, 
respectively. They also include original OHMEs from the 
CROHME training set. The number of OHMEs and generated 
OHMEs for each training set are shown in table I. 

TABLE I.   DESCRIPTION OF TRAINING SETS 

 CROHME 
training set 

G_CROHME
1 

G_CROHME
2 

# of OHMEs 8,835 35,340 53010 
# of generated 

OHMEs 0 26,508 44,180 

 

We employ the CROHME 2013 test set for validation and 
the CROHME 2014 test set for evaluation. 

 
Fig. 7. Structure of CNN feature extraction. The parameters of the 
convolution and max pooling layers are denoted as “Conv (filter size): 
number of filters” and “Max pooling (filter size)”, respectively. 

Global 
distortion

Training process

Training 
Database

Epoch k

Training process

Training 
Database

Epoch kWithout 
distortion

Input

Conv (3x3): 64
Batch Norm

ReLU

Max pooling (2x2)

Conv (3x3): 128
Batch Norm

ReLU

Max pooling (2x2)

Conv (3x3): 256
Batch Norm

ReLU

Max pooling (1x2)

Conv (3x3): 256
Batch Norm

ReLU

Max pooling (2x1)

Conv (3x3): 512
Batch Norm

ReLU

Output
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B. End-to-end system configuration 
A CNN with convolution, batch norm, ReLU, and max-

pooling layers was employed for feature extraction as shown in 
Figure 7. A single layer bidirectional LSTM and a single layer 
LSTM are used for the encoder and decoder, respectively. The 
size of hidden states of the encoder and decoder is 256 and 512, 
respectively. We used mini-batch stochastic gradient descent to 
learn the parameters. The initial learning rate was set to 0.1. 
The training process was stopped when the recognition rate on 
validation set stopped improving after 10 epochs. The system 
was implemented by using Torch and the Seq2seq-attn NMT 
system [14]. All the experiments were performed on a 4GB 
Nvidia Tesla K20. 

C. Results 
The first experiment evaluated the performance of the end-

to-end systems trained on the CROHME training set, 
G_CROHME1, and G_CROHME2. An OHME is recognized 
correctly in terms of expression level if all of its symbols, 
relations and its structure are recognized correctly. For 
measurement, we use expression recognition rate which counts 
OHMEs recognized at the expression level over all the testing 
OHMEs. The training process is shown in Figure 6(b). Table II 
shows the recognition rate on validation and testing sets by 
using different training sets. The recognition rates on both 
validation and testing set increase when the number of training 
patterns increases. 

TABLE II.  PERFORMANCE OF END TO END SYSTEM ON DIFFERENT 
TRAINING SETS. 

Rec. rate CROHME 
training set 

G_CROHME
1 

G_CROHME
2 

Validation(%) 17.16 19.55 21.64 

Testing(%) 18.97 21.10 26.27 

 

One of techniques to prevent over-fitting and improve 
generalization of neural models is to use distortions at the 
beginning of every epoch. In this experiment, we employed the 
global distortion model described in Section III.B and the same 
data in Table II. The training process is shown in Figure 6(a). 
The results are shown in Table III. Similarly, the recognition 
rates increase when the number of training patterns increases. 

TABLE III.  PERFORMANCE OF END TO END SYSTEM WITH DISTORTION ON 
TRAINING. 

Rec. rate CROHME 
training set 

G_CROHME
1 

G_CROHME
2 

Validation(%) 23.25 30.04 30.10 

Testing(%) 28.09 34.99 35.19 

 

Table IV shows our best recognition result and the results 
of the systems which participated in the CROHME 2014 
competition. The four factors are measured in the evaluation, 
namely, Sym Seg as symbol segmentation rate, Sym Seg + Rec 
as symbol segmentation and recognition rate, Rel Tree as rate 
of structural analysis (termed “relation tree”), and Exp Rec as 
expression recognition rate. The end-to-end system produces 

latex format, so that we obtain only expression recognition rate. 
The best end-to-end system is ranked third after systems I and 
III. 

TABLE IV.  COMPARISION OF END TO END MODEL AND THE RECOGNITION 
SYSTEMS ON CROHME 2014 (%) 

Measure 
Method 

Sym 
Seg 

Sym Seg 
+ 

Rec 
Rel Tree 

Exp 
Rec 

I 93.31 86.59 84.23 37.22 
II 76.63 66.97 60.31 15.01 
III 98.42 93.91 94.26 62.68 
IV 85.52 76.64 70.78 18.97 

V 88.23 78.45 61.38 18.97 

VI 83.05 69.72 66.83 25.66 

VII 89.43 76.53 71.77 26.06 

End-to-end N/A N/A N/A 35.19 
 
Finally, we evaluate the end-to-end system by structure 

recognition rate. Structure recognition rate is calculated by the 
percent of OHMEs whose structure is recognized correctly 
irrespective of symbol labels. For example, the two OHMEs 
(x2 + 1 and x3 + 7) share the same structure. Table V shows the 
structure recognition rates of the end-to-end systems trained 
on the CROHME training set, G_CROHME1, and 
G_CROHME2. It shows that the end-to-end systems can learn 
well the structures of OHMEs. If we want to improve the 
expression recognition rates of the end-to-end systems, the 
remaining problem is how to improve the symbol recognition 
inside the end-to-end systems. 

TABLE V.  STRUCTURE RECOGNITION RATE OF END-TO-END SYSTEMS 
WITH DISTORTION ON TRAINING SET. 

Rec. rate CROHME 
training set 

G_CROHME
1 

G_CROHME
2 

Testing(%) 51.52 58.22 56.69 

 
Figure 8 shows examples recognized correctly and 

incorrectly by the end-to-end system trained on G_CROHME2. 

 

  

 
a). Correctly recognition 

 

 

  

b) Incorrectly recognition 
Fig. 8. Examples recognized correctly and incorrectly by our system.
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V. CONCLUSION 
In this paper, we have presented the end-to-end system for 

recognizing OHMEs. We proposed a combination of the local 
and global distortion models for patterns generation. The 
efficiencies of the proposed local and global distortion models 
are demonstrated through the experiments. The recognition rate 
is improved when we increase the number of training patterns. 
It achieves 28.09%, 34.99% and 35.19% by using distortion on 
the CROHME training set, G_CROHME1, and G_CROHME2, 
respectively. It shows that the end-to-end system is a potential 
system to compare with existing systems of OHME recognition. 

There still remain problems to improve the expression 
recognition rate of the end-to-end system as follows. First, we 
should generate more OHMEs whose structures are more 
varied and employ a larger memory GPU for training. Then, 
we should improve the symbol recognition inside the end-to-
end system by employing tree-structured LSTM [15] or 
decomposable attention model [16]. 
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