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a b s t r a c t

The task of text/non-text classification in online handwritten documents is crucially important to text
recognition, text search, and diagram interpretation. It, however, is a challenging problem because of the
large amount of variation and lack of prior knowledge. In order to solve this problem, we propose to use
global and local contexts to build a high-performance classifier. The classifier assigns a text or non-text
label to each stroke in a stroke sequence of a digital ink document. First, a neural network architecture is
used to acquire the complete global context of the sequence of strokes. Then, a simple but effective
model based on a marginal distribution is used for the local temporal context of adjacent strokes in order
to improve the sequence labeling result. The results of experiments on available heterogeneous online
handwritten document databases demonstrate the superiority and effectiveness of our context
combination approach. Our method achieved classification rates of 99.04% and 98.30% on the Kondate
(written in Japanese) and IAMonDo (written in English) heterogeneous document databases. These
results are significantly better than others reported in the literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The task of text/non-text classification in online handwritten
documents is to classify handwritten strokes into two categories: text
and non-text, where a stroke is a time sequence of pen-tip or finger-
tip points recorded from pen-down to pen-up. This task can be used as
a preprocessing step for text recognition, text search, or diagram
interpretation. It is also a prerequisite to the selection of an appropriate
engine for processing the handwritten objects further. The classifica-
tion results are used to decide whether the text strokes should be sent
to a handwriting recognizer or an ink search engine. On the other
hand, non-text strokes can be grouped together and recognized as
higher level graphical entities like flow-chart, finite automata, etc., by a
diagram interpreter. Text and non-text classification can be extended
for multi-class non-text classification as [1,2], but this paper focuses on
text and non-text classification since it is most basic and generic for
many applications.

In recent years, smart phones, tablets, tablet PCs, electronic
whiteboards equipped with pen-based and touch-based handwriting
interfaces have become popular with a vast number of people.
Moreover, in the near future, electronic paper and paper-like PCs
will become available. People are now able to take notes, draw

sketches, and create diagrams on their mobile devices. Online pen-
tip traces or finger-tip traces, which are also called digital ink, are a
natural and efficient way to express ideas, draw up concepts or
summarize knowledge without requiring people to pay any attention
to the mode of input. Due to the heterogeneous mixture of text and
graphics, however, the advent of digital ink has brought new
challenges to document analysis and recognition systems. Many
researchers have proposed methods to solve these problems [1,3–
9] and several heterogeneous digital ink databases have been
collected to evaluate their methods [9–12]. Fig. 1 shows examples
of heterogeneous digital ink from commonly used databases: Kon-
date which is in Japanese [9] and IAMonDo which is in English [10].

In this paper, we propose a novel method to combine global
and local contexts of a stroke sequence for the purpose of text/
non-text classification in online handwritten documents. Global
context refers to the feature vector sequence of an entire docu-
ment and local context refers to the prediction of directly adjacent
strokes. The method is simple but effective since the global
context is determined from the output of a neural network and
the local context is obtained from the relationship between
temporally adjacent strokes. It also establishes a new level of
performance for text/non-text classification in heterogeneous
online handwritten documents.

The rest of this paper is structured as follows. Section 2 reviews
related work on the classification of text and non-text contents in
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heterogeneous online handwritten documents. This survey pre-
sents the requirements and ways of using contextual information
in the text/non-text classification task. Section 3 overviews our
approach, and Section 4 describes the method in detail and
introduces recurrent neural network architectures that are used
as classifiers. Section 5 evaluates the effectiveness of our approach
on the available databases. Section 6 draws the conclusion.

2. Related work

The text/non-text classification task for digital ink is to classify
online handwritten strokes into two categories: text and non-text. It
is also called text/drawing segmentation [13], text/graphics separation
[3,14], text/shape division [15–17], and so on. It is basically a two-
category problem but text may be further divided into text and
formulas [13], and non-text strokes may be further classified into
several categories of graphics [18–21]. Another very similar task is
mode detection [22–24]. It allows a user to write text and graphics
without specifying or changing the mode in which the user is writing
so that each graphic object is assumed to be written without switch-
ing to text. The difference between them lies in the input and output
of the classification task. The input of text/non-text classification can
be any mixed sequence of text and non-text strokes and the output is
a sequence of labels for all the strokes, whereas the input of mode
detection is a sequence of strokes for text or non-text without a
specified mode and the output is the estimate of the mode. Although
these tasks or problems are different, they share a number of
technologies so both will be reviewed in this section.

2.1. Text/non-text classification

Many methods have been proposed for solving the text/non-text
classification problem. They can be divided into three groups: isolated
classification, context-integrated classification, and sequence classifi-
cation according to how contextual information is made use of.

Isolated classification uses descriptions to classify strokes
rather than exploiting any contextual information. Jain et al. [1]
proposed a linear classifier to distinguish between text and non-
text strokes represented by only two features: length and curva-
ture. Isolated classification can also be employed before context-
integrated classification [3–9].

Context-integrated classification makes use of several sources
of contextual information (local, spatial and temporal) to improve
classification accuracy. Mochida et al.'s study [9] was an early
attempt. They used the stroke size feature to classify the digital ink
and then modified the classification by taking into account stroke
crossings. They further classified text into Japanese text and
formulas based on the stroke density as well as on text and
formula recognition scores. Bishop et al. [3], Zhou and Liu [4], and
Delaye et al. [5–7] proposed probabilistic graphical models:
Hidden Markov Models (HMMs), Markov Random Fields (MRFs),
and Condition Random Fields (CRFs) for better integrating inter-
actions between neighboring strokes. Bishop et al. [3] used a
multilayer perceptrons (MLPs) for isolated classification to acquire
the probability of a stroke being text or non-text. Then, they used a
HMM model to incorporate temporal contexts between adjacent
strokes. On the other hand, Zhou and Liu [4] and Delaye et al. [5–7]
used support vector machines (SVMs) for isolated classification of
single strokes and classification of stroke pairs before the context-
integrated classification. The probabilities of single strokes and
stroke pairs were created by fitting the SVM outputs to sigmoid
functions. Zhou and Liu [4] incorporated spatial interactions
between neighboring strokes in their MRF model. Furthermore,
Delaye et al. [5–7] integrated multiple sources of context. They
used a CRF framework to present the interactions between strokes
in terms of neighboring systems and clique potentials. They
proposed five neighboring systems describing different sources
of contextual information for stroke classification: spatial system,
temporal system, intersecting system, lateral system and stroke
continuation system. The combination of all these systems per-
formed the best. These methods demonstrate the superiority of

Fig. 1. Examples of heterogeneous digital ink from Kondate (a) and IAMonDo (b). Text strokes are shown in black, non-text strokes are shown in blue. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Performance of various classifiers.

Database SVM Our SVM MLP RNN LSTM BRNN BLSTM

Kondate (11 features) Rate (%) 92.58 [4] 92.63 92.78 94.88 95.44 96.34 96.57
Total time (s) – 5.31 0.32 0.23 0.83 0.44 1.76

IAMonDo (19 features) Rate (%) 94.44 [7] 93.09 93.74 96.57 97.25 97.47 97.72
Total time (s) – 20.55 0.31 0.25 0.83 0.44 1.78
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probabilistic graphical models taking advantage of context over
the isolated classification of MLPs or SVMs.

Finally, recently developed long short-term memory (LSTM), a
type of recurrent neural network (RNN), has been used for text/
non-text classification [8]. In particular, bidirectional LSTM
(BLSTM) has shown better performances compared with other
algorithms for classification of time-series sequence patterns in
speech recognition [25] and handwriting recognition [26]. BLSTM
has been applied to online handwriting documents represented as
streams of local feature vectors of sampling points. The network
translates them into sequences of labels representing text and
non-text. The network is bidirectional so that the classification is
influenced by temporal context in both directions: forward and
backward. The method yields a very accurate classification on the
IAMonDo database.

Of all approaches, those of Zhou and Liu [4] and Delaye et al. [7]
have state-of-the-art performances for Japanese (the Kondate
database) and English (the IAMonDo database). Their classification
rates are 96.61 % and 97.23%. For that reason, we decided to
compare our approach with these methods.

2.2. Mode detection

The mode detection task for digital ink is to detect the mode
(text or non-text) of online handwritten strokes. It is helpful for
real-time applications and improves the user interfaces of tablet
PCs and similar pen-based devices. It runs on-the-fly while the
user is writing on the surface of the devices.

There have been several studies on mode detection. Most of
them conducted evaluations on the IAMonDo database, which
serves as a benchmark. Indermuhle et al. [10] presented two
methods to solve the mode detection problem. The first method
follows after Jain et al. [1] by taking into account two simple
features of a trace: length and accumulated curvature. The method
achieved a classification rate of 91.3% on IAMonDo. The second
method considers only offline information. After performing con-
nected component analysis on a document, features are extracted
from individual connected components. This method achieved
94.4% correct classification of pixels. The classifiers used in both
systems are SVMs. Weber et al. [23] developed a multiple classifier
system (MCS). It was an improvement of Liwicki et al.'s system
[22] that added new features, applied feature selections, used
several state-of-the-art recognizers and performed multiple clas-
sifier combination strategies. Its classification rate was 97%.
Recently, Otte et al. [24] proposed a novel approach for online
mode detection. The approach works on local features within an
RNN model: a standard RNN or a more complex LSTM. Their LSTM
approach outperformed other state-of-the-art classifiers including
SVMs and MCS and had an accuracy of 98.47% on average.

3. Outline of our approach

In order for text/non-text classification to be practical, it should
be highly accurate and quick. The context-integrated approaches
in [4,7] have state-of-the-art performances; however, they are too
costly due to their use of a SVM for single stroke classification and
three SVMs for stroke pair classification. On the other hand, the
sequence classification in [8] has a small time complexity since it
simply considers interactions between pen-tip or finger-tip points.
Its accuracy of 97.01% is not high enough to be useful.

Hence, we decided to take a context-integrated sequence classi-
fication approach to satisfy the requirements of accuracy and speed.
Our approach is similar with these approaches in some points. It
classifies single strokes and stroke pairs as in [4,7], and it uses
recurrent neural network for classification as in [8]. The differences

with [4,7], however, are to use RNNs instead of SVMs for isolated
classification and to use only one RNN instead of three SVMs for
stroke pair classification. On the other hand, the differences with [8]
are the way the feature is extracted and the way RNN is used. The
features in [8] are extracted on each point while our features are on
each stroke. RNN in [8] is used as a sequence transcriber which
transcribes a sequence of point feature vectors into a sequence of
stroke labels (m points to n labels), while RNN we use is a sequence
classifier which classifies each stroke represented by a feature vector
as text or non-text label (n strokes to n labels).

In preliminary experiments, we tested RNNs to compare with
SVMs in the same number of features as in [4] on Kondate (11
features) and as in [7] on IAMonDo (19 features). Our testing SVMs
are used to estimate the classification time of the SVMs in [4,7].
The classification time is the total time for all documents in the
testing dataset. The classification result of classifiers is shown in
Table 1. It is obvious that RNNs outperform SVMs on both accuracy
and speed. While SVMs and MLPs do not allow access to past
context or future context in the classification, traditional RNNs
(RNNs and LSTMs) allow access to past context, and bidirectional
RNNs (BRNNs and BLSTMs) allow access to both past and future
contexts. The accuracies of bidirectional RNNs are hence better
than traditional RNNs, SVMs and MLPs.

In our use of RNNs for classification, the context is retrieved in
the scope of a whole document so that it said to be global. Due to
the large scope of the whole document, however, its effect is
blurred to each stroke. Therefore, we combine the influence of
neighbors on a stroke by considering the prediction of adjacent
strokes. We use another RNN to classify stroke pairs. Since the
network processes a sequence in temporal order, our local context
is temporal. Our approach is a strategy that integrates global and
local contexts.

The structure of our approach can be divided into three stages
as shown in Fig. 2. The first stage of the classification applies a
global sequence labeling prediction model (RNN) to all strokes,
based on a fixed size of feature descriptors for each stroke.
Another RNN is also applied to all stroke pairs. The second stage
integrates the prediction of stroke pairs into the prediction of a
single stroke by operating marginalization on each stroke based on
local temporal neighborhood. The last stage combines the global-

Fig. 2. Structure diagram of our approach.
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based classifier and the local-integrated classifier to achieve better
performance.

Our main contributions are as follows. Firstly, we investigate
and add new features including context features. Secondly, we
make use of bidirectional networks to gain access to the global
context of the whole document. Thirdly, we employ a simple but
effective model to access the local context with temporally
adjacent strokes. Finally, we propose multiple classifier combina-
tion strategies for combining global and local contexts to improve
classification accuracy as much as possible.

4. Combination of global and local contexts

In this section, we present the context integration approach in
detail. First, we present the use of a recurrent neural network to
acquire global context and classify every stroke into text or non-text.
Next, we describe the integration with local context of adjacent
strokes. Then, we describe the combination of these contexts to
achieve better performance. At last, we briefly introduce the recurrent
neural network architecture which we use as a global context based
classifier to label a sequence of single strokes or stroke pairs.

4.1. Global context based classifier

4.1.1. Global context model
The global context model is a bidirectional recurrent neural

network which can map the entire history of input to each output
in a document. Input is a sequence of feature vectors which is
extracted from strokes in an online handwritten document and
output is a sequence of labels for every stroke. A stroke is a time
sequence of pen-tip points recorded between a pen-down event
and a pen-up event. A feature vector, denoted by s is extracted
from every stroke. The training samples consist of a set of N
ordered strokes with feature vectors sn, where n¼ 1;…;N and

class labels lnAf0;1g such that ln ¼ 1 denotes a text stroke and
ln ¼ 0 denotes a non-text stroke. In this model, the neural network
classifies a sequence of feature vectors to a sequence of labels. For
classification of single strokes, we train the neural network using
back propagation through time (BPTT). The output yn ¼ y snð Þ of the
resulting network model represents the probability of a stroke
being text given the feature vector sn. The probability distribution
of ln is a Bernoulli distribution expressed as

P ln j snð Þ ¼ yn
ln ð1�ynÞ1� ln ð1Þ

Hence, from the probability output of the network model, we
decide the label of the stroke as follows:

ln ¼
1 if ynZ0:5;
0 otherwise:

�
ð2Þ

We call this classifier the Global context based Single stroke
Classifier (GSC) since it is a sequence classifier predicting one label
for each stroke based on global context.

4.1.2. Single stroke features
For classifying a single stroke into two categories, we exploit 16

contour-based shape features and 10 context features. They are all
unary features. These features have been shown to be effective in
text/non-text classification [4–7] and mode detection [22,23]. The
shape features are extracted from each stroke directly, while the
context features are extracted by considering its interactions with

Table 2
Unary features extracted from a single stroke and its local context.

Feature type # Feature description

Contour-based shape features Holistic 1 Trajectory length
2 Perimeter length
3 Width of the bounding box
4 Height of the bounding box
5 Area of the convex hull
6 Duration of the stroke
7 Compactness
8 Eccentricity
9 Ratio of the principal axis of the stroke seen as a cloud of points

10 Rectangularity of the minimum area bounding rectangle of the stroke
11 Normalized centroid offset along major axis
12 Ratio between first-to-last point distance and trajectory length

Structural 13 Circular variance
14 Accumulated curvature
15 Accumulated perpendicular
16 Accumulated signed perpendicular

Context features Spatial 17 Number of spatial neighbour strokes
18 Average of the distances from the stroke to spatial neighbour strokes
19 Standard deviation of the distances from the stroke to spatial neighbour strokes
20 Average of lengths of spatial neighbour strokes
21 Standard deviation of lengths of spatial neighbour strokes

Temporal 22 Number of temporal neighbour strokes
23 Average of the distances from the stroke to temporal neighbour strokes
24 Standard deviation of the distances from the stroke to temporal neighbour strokes
25 Average of lengths of temporal neighbour strokes
26 Standard deviation of lengths of temporal neighbour strokes

Fig. 3. Different correlations between a stroke with its adjacent strokes.
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neighboring strokes. Our goal here is to investigate the effect of
context features in text/non-text classification. Hence, two sets of
features with and without context features that contain 16 and 26
features, respectively, are used to build two binary classifiers. The
first set contains contour-based shape features that can be divided
into holistic and structural features. Holistic features (#1–#12) are
extracted from the dimensions of a stroke including length, area,
and compactness. On the other hand, structural features (#13–
#16) are extracted from the trajectory of a stroke, like curvature,
perpendicularity, etc. The second set compiles five features (#17–
#21) of the spatial context and five features (#22–#26) of the
temporal context. All these unary features are listed in Table 2.

4.2. Local context integrated classifier

4.2.1. Local context model
The temporal distribution of strokes in an online document

obviously provides extremely valuable information for the stroke
classification task. It has been proven that the interactions
between strokes based on temporal information are more infor-
mative than spatial information, intersection, lateral information
or stroke continuation interactions [5–7]. Furthermore, it is
obvious that the context is influenced by the distance between
strokes. The closer two strokes are in the document, the more they
will share the same context. The context of the interaction
between more widely separated strokes can have a negative effect,
so we decided to consider only temporal context between adjacent
strokes. Another advantage of this approach is that it does not
require any computation to determine whether two strokes are
neighbors or not.

In order to exploit the temporal context of two adjacent strokes,
we propose to use marginal distribution. Given two events X and Y
whose joint distribution is known; the marginal distribution of X is
simply the probability distribution of X averaged over the information
about Y. In other words, it is typically calculated by summing or
integrating the joint probability distribution over Y.

P X ¼ xð Þ ¼
X
y

P X ¼ xjY ¼ yð ÞPðY ¼ yÞ ð3Þ

In our model, the marginal distribution of a stroke with feature
vector sn is calculated by integrating the joint probability distribu-
tion of its preceding stroke and/or succeeding stroke.

Three types of local context models are shown in Fig. 3. We call
them the preceding, succeeding, and bidirectional model (PM, SM,
and BM). Their probabilities of a stroke being text correlated with
its adjacent ones are as follows:

PPM ln ¼ 1j snð Þ ¼ P ln ¼ 1; ln�1 ¼ 1j sn; sn�1ð ÞP ln�1 ¼ 1j sn�1ð Þ
þP ln ¼ 1; ln�1 ¼ 0j sn; sn�1ð ÞP ln�1 ¼ 0j sn�1ð Þ ð4Þ

PSM ln ¼ 1j snð Þ ¼ P ln ¼ 1; lnþ1 ¼ 1j sn; snþ1ð ÞP lnþ1 ¼ 1j snþ1ð Þ
þP ln ¼ 1; lnþ1 ¼ 0j sn; snþ1ð ÞP ln�1 ¼ 0j snþ1ð Þ ð5Þ

PBM ln ¼ 1j snð Þ ¼ PPM ln ¼ 1j snð ÞþPSM ln ¼ 1j snð Þ ð6Þ
The probability of a stroke being non-text PPM ln ¼ 0j snð Þ,

PSM ln ¼ 0j snð Þ, or PBM ln ¼ 0j snð Þ is computed similarly. Although it
should be theoretically the product rather than the sum if the
constituent terms are independent, its estimation error is fatal so
that we use the sum as often used in ensemble classifiers [27]. The
stroke labeling result in the local context model is then deter-
mined by:

ln ¼
1 if P ln ¼ 1j snð ÞZP ln ¼ 0j snð Þ;
0 otherwise:

�
ð7Þ

We call this classifier the Local Context integrated Classifier
(LCC) since it integrates the local context into the global context
based classifier.

We use a single stroke classifier in the global context model to
get the probabilities P ln j snð Þ, whereas a binary SVM classifier was
used to get them in [4–7]. We use only one neural network
classifier, i.e. a ternary or a quaternary classifier, to get the
probabilities P ln; ln�1 j sn; sn�1ð Þ, whereas three binary SVM classi-
fiers were used to get them in [4,5]. We call this classifier the
Global context based stroke Pair Classifier (GPC) since it is based
on the global context as the same as the single stroke classifier. We
train the GPC classifier in the same way as the single stroke
classifier by using a neural network. This neural network is applied
to a sequence of feature vectors extracted from pairs of two
temporally adjacent strokes in an online handwritten document.
If the document has n strokes, there are (n�1) pairs of two
adjacent strokes. The classifier is ternary or quaternary, depending
on whether the temporal order of the two adjacent strokes is
considered or not when they are different in type. In the case of
the ternary classifier, a text:non-text pair is assumed to be

Table 3
Binary features extracted from a pair of two adjacent strokes.

Feature type # Feature description

Basic 1 Minimum distance between 2 strokes
2 Minimum distance between the endpoints of 2 strokes
3 Maximum distance between the endpoints of 2 strokes
4 Distance between the centers of the 2 bounding boxes of 2 strokes

Additional symmetric 5 Horizontal distances between the centroids of 2 strokes
6 Vertical distances between the centroids of 2 strokes
7 Off-stroke distance between 2 strokes
8 Off-stroke distance projected on X and Y axes
9 Temporal distance between 2 strokes

10 Ratio of off-stroke distance to temporal distance
11 Ratio of off-stroke distance projected on X,Y axes to temporal distance
12 Ratio of area of the largest bounding box of 2 strokes to that of their union

Asymmetric 13 Ratio of widths of the bounding boxes of 2 strokes
14 Ratio of heights of the bounding boxes of 2 strokes
15 Ratio of diagonals of the bounding boxes of 2 strokes
16 Ratio of areas of the bounding boxes of 2 strokes
17 Ratio of lengths of 2 strokes
18 Ratio of durations of 2 strokes
19 Ratio of curvatures of 2 strokes
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equivalent to a non-text:text pair as the same as in [4–7]. On the
other hand, the quaternary classifier distinguishes between text:
non-text and non-text:text, implying that the stroke pairs are
classified into four categories: text:text, text:non-text, non-text:
text, non-text:non-text.

4.2.2. Stroke pair features
To classify a pair of adjacent strokes into three or four

categories, we exploit a set of 12 symmetrical and seven asymme-
trical measures. They are binary features. These features repre-
senting the relationship between two neighboring strokes were
used in [4–7]. We extract them from every pair of temporally
adjacent strokes. While the symmetrical features are independent
of the temporal order of the strokes, the asymmetrical features are
not. Our aim here is to investigate the effect of these features, we
use a set of four basic features, as in [4], and a complete set of 19
features are then used to build two versions of the ternary
classifiers. Since there are asymmetrical features in the latter set,
it is also used to build the quaternary classifier. All these binary
features are listed in Table 3.

4.3. Combined classifier

Since a combination of classifiers is more accurate than a single
classifier in most cases, we combine the classifier of the global
context model with that of the local context model. In this paper,
we employ four basic combination rules as listed below:

Sum rule (SUM):

lnn ¼ argmax
XK
k ¼ 1

f k ln j snð Þ; lnA 0;1f g
( )

ð8Þ

Product rule (PROD):

lnn ¼ argmax ∏
K

k ¼ 1
f k ln j snð Þ; lnA 0;1f g

( )
ð9Þ

Max rule (MAX):

lnn ¼ argmax maxKk ¼ 1f k ln j snð Þ; lnA 0;1f g� � ð10Þ
Min rule (MIN):

lnn ¼ argmax minK
k ¼ 1f k ln j snð Þ; lnA 0;1f g� � ð11Þ

where K ¼ 2, f 1 ln j snð Þ is the probability distribution of ln calculated
by the GSC classifier, i.e., (1) and f 2 ln j snð Þ is one of the three
probability distributions of ln calculated by the LCC classifier, i.e.,
(4), (5) or (6).

Furthermore, we weighted each of the classifiers so that the
final ensemble would reflect the reliability of each of them. We
tried adjusting the contributions of the component classifiers with
two functions:
a linear function

f 0k ln j snð Þ ¼ λk;1f k ln j snð Þþλk;2 ð12Þ
or an exponential function

f 0k ln j snð Þ ¼ f k ln j snð Þλk ð13Þ
where 0rλkr1 is the classifier weighting parameter that controls
the contribution of the classifier to get the probability of a stroke
being text or non-text. There are two component classifiers and
four combination rules so that there are totally 16 parameters for
the linear functions and eight parameters for the exponential
functions. Given the above definition of λk, it is obvious that if λk
equals 1 then the kth classifier is fully reliable. Moreover, λk
approaches 0, the kth classifier becomes less and less reliable.
The weighting parameters are optimized by running a genetic
algorithm on the validation dataset.

4.4. Recurrent neural network

The task of classifying single strokes or pairs of strokes in an ink
document can be viewed as a sequence labeling task. Here, a
sequence of feature vectors is transcribed into a sequence of labels.
Recurrent neural network (RNN) has been applied with remark-
able success to the field of speech and handwriting recognition.
They are able to access the past as well as the future inputs (in the
case of bidirectional RNN) of a stroke sequence. Therefore, we
decided to employ a bidirectional architecture and the recently
developed LSTM to solve the text/non-text classification problem.

A recurrent neural network is an artificial neural network
(ANN) that allows cyclical connections. It is different from a
multilayer perceptron (MLP) [28], an acyclic ANN; whereas an
MLP can only map from input to output vectors, an RNN can map
from the entire history of the previous inputs to each output. For
this reason, MLP is suitable for pattern classification, while RNN is
good for sequence labeling. The standard RNN, however, only
considers the past context. The bidirectional recurrent neural
network (BRNN) [29] offers a solution to the problem. It uses a
finite sequence to label each element of the sequence on the basis
of both the past and future context. This is done by adding the
outputs of two RNNs, one processing the sequence from left to
right, the other one from right to left.

Among the various RNNs, LSTM [30] overcomes the main
problem of standard RNNs, the vanishing gradient problem. The
problem is that error gradients vanish exponentially over time as
new inputs overwrite the activation of hidden units and the
network almost forgets the first inputs. In order to solve this
problem, the hidden layers in the LSTM architecture are made up
of LSTM blocks instead of simple nodes.

In our architecture, the size of the input layer is the number of
the features extracted from single strokes and pairs of strokes. The
number of hidden layers is two, and they consist of k and l units
that use a hyperbolic tangent (tanh) function for activation. The
size of the output layer is two (text and non-text) in the case of the
single stroke classifier (GSC) and three or four (text:text, non-text:
non-text, text:non-text or/and non-text:text) in the case of the
stroke pair classifier (GPC). The output activation functions used
for RNNs are the same as standard ANNs: logistic sigmoid for
binary classification and soft-max for multiclassification.

5. Experiments

We performed experiments to evaluate the contribution of
global and local contexts to the task of text/non-text classification
in heterogeneous online handwritten documents and to show the
effect of combining these contexts. First, we describe the databases
for the experiments. Next, we describe the feature normalization
and present the settings for feature extraction and network
training. After that, we show the results of the classifiers using
global context, local context, and their combination. Finally,
qualitative analyses are conducted.

Here, we employ each page in the databases as a whole
document to derive the global context since each page stores
handwriting on some topic by a single writer.

5.1. Databases

We evaluated our method on four databases of heterogeneous
handwritten documents: the Japanese text database Kondate [9],
the English text database IAMonDo [10], the flowchart database FC
[11] and the finite automata database FA [12], which is available at
http://cmp.felk.cvut.cz/�breslmar/finite_automata. Furthermore,
save for the FA database, we used these databases to compare
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our method with the previous ones using the same benchmarks
for the text/non-text classification task. Besides the holdout
validation method, in order to limit problems like overfitting
when evaluating the true ability of the proposed method, we
performed a four-fold cross validation on the two main databases,
IAMonDo and Kondate.

The Kondate database has 669 digital ink document pages
acquired from 67 writers, 10 pages per writer, except nine pages
for the last writer. It has been used in text/non-text classification
experiments reported in [4]. For the holdout validation, 310 pages
were used for training the classifiers and 359 pages were used for
testing. Hence, in our experiments, we used 210 pages for training,
100 pages for validation from the above training dataset, since we
needed samples for validation, and the same 359 pages for testing.
For the four-fold cross validation, the database was split into
4 disjoint sets each consisting of approximately 170 documents.
No two document pages from the different sets were created by
the same writer. Four sets were indexed from 0 to 3; two sets (0þ i
mod 4) and (1þ i mod 4) were used for training, one (2þ i mod 4)
for validation, and one (3þ i mod 4) for testing, where i¼0,…,3.
Table 4 summarizes the number of document pages and strokes in
each set, as well as the number and proportion of text (T) and non-
text (N) strokes in these datasets for holdout and cross validation.

The IAMonDo database consists of about 1,000 heterogeneous
online document pages produced by 200 writers. The database is
split into five disjoint sets, each consisting of approximately 200
documents. It has been used for experiments on text/non-text
classification [5,8]. For the holdout validation, 403 pages of set
1 and 2 were used for training, 200 pages of set 3 were used for
validation and 203 pages of set 4 were used for testing. For the
four-fold cross validation, the four sets from 1 to 3, except for 4,
were used in the same way as in the Kondate database. Addition-
ally, as in [24], we performed experiments on two particular sub-
databases of tables and diagrams extracted from the complete
database (called Tables_IAM and Diagrams_IAM). Tables_IAM
contains straight lines as non-text and are therefore easy to
distinguish from text, while Diagrams_IAM has much more varia-
tion, making them harder to separate from text. Table 5 sum-
marizes the number of document pages and strokes, together with
the number and proportion of text (T) and non-text (N) strokes in
these databases.

The FC database has a total of 419 flowcharts drawn by 46
writers. In previous studies, 248 flowcharts were used for training
and 171 flowcharts were used for testing flowchart recognition
[31,32]. In our experiments, we used 187 diagrams for training and
61 diagrams for validation from the above training dataset. Testing
was conducted on the remaining 171 flowcharts in the same way
as the above. On the other hand, the experiment on text/non-text
classification in [33] employed only 200 diagrams for training.

Lastly, the recently collected FA database contains 300 finite
automata diagrams acquired from 25 persons. The database is
divided into 132, 84, and 84 diagrams for training, validation, and
testing, respectively.

Table 6 summarizes the number of flowcharts and finite
automata diagrams as well as the number and proportion of text
(T) and non-text (N) strokes in the datasets of the two databases
FC and FA.

5.2. Feature normalization

The distribution of each feature extracted from a single stroke
and stroke pair is distorted from a normal distribution. Hence, we
use a power transformation to make the density function closer to
a Gaussian. We set the power to 0.5 to transform each feature
value. Furthermore, in order to standardize the feature values, we
normalize the values of each feature based on the mean μf and

standard deviation σf of that feature. The normalized feature value
is then calculated as

v0f ¼
vf �μf
σf

ð14Þ

The mean and standard deviation are calculated for each
feature over the training samples. These values are stored and
used for normalizing the training, validation, and testing samples.

5.3. Parameter settings

In the feature extraction of single strokes and pairs of strokes,
two strokes are considered as temporal and spatial neighbors if
the temporal and spatial distances between them are less than
thresholds of 3.5 s and 4 pixels, respectively. The FC and FA
databases have no information about the stroke writing time, so
we assumed a velocity of 1 pixel/s in order to obtain the temporal
distance from the trajectory length.

In the training of the single stroke and stroke pair classifiers,
we used four-layered networks with two fully connected recurrent

Table 4
Statistics for datasets in the Kondate database.

Validation
method

Dataset #Pages #Strokes #T #N %T:%N

Holdout Training 210 41,190 34,406 6,784 83.53:16.47
Validation 100 18,525 15,725 2,800 84.89:15.11
Testing 359 71,846 61,384 10,462 85.44:14.56

Cross validation Set 1 170 33,633 28,293 5,340 84.12:15.88
Set 2 170 32,412 27,240 5,172 84.04:15.96
Set 3 170 34,217 29,054 5,163 84.91:15.09
Set 4 159 31,299 26,928 4,371 86.03:13.97

Table 5
Statistics for datasets in the complete and particular databases of IAMonDo.

Database Dataset #Pages #Strokes #T #N %T:%N

IAMonDo Set 1 203 70,976 58,206 12,770 82.01:17.99
Set 2 200 72,374 57,851 14,523 79.93:20.07
Set 3 200 68,726 57,455 11,271 83.60:16.40
Set 4 203 70,927 57,634 13,293 81.26:18.74

Tables_IAM Training 184 13,010 12,221 789 93.94:6.06
Validation 92 6,546 6,197 349 94.67:5.33
Testing 102 6,857 6,483 374 94.55:5.45

Diagrams_IAM Training 386 27,090 11,682 15,408 43.12:56.88
Validation 191 11,812 4,912 6,900 41.58:58.42
Testing 193 11,698 4,890 6,808 41.80:58.20

Table 6
Statistics for datasets in the FC and FA databases.

Database Dataset #Diagrams #Strokes #T #N %T:%N

FC Training 187 17,752 11,074 6,678 62.38:37.62
Validation 61 5,607 3,481 2,126 62.08:37.92
Testing 171 15,696 9,614 6,082 61.25:38.75

FA Training 132 6,792 3,261 3,531 48.01:51.99
Validation 84 4,059 2,189 1,870 53.93:46.07
Testing 84 4,125 2,077 2,048 50.35:49.65
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hidden layers. The numbers of units/blocks k and l in these two
layers are set to 10 and 30. The learning rate was 10�5 on BRNNs
and 10�4 on BLSTMs. The momentum rate was 0.9 for all trainings.

The above parameters were optimized on Kondate. They also
work well on the other databases so that we use themwithout any
attempt to optimize them again.

For testing, each experiment was repeated 20 times to make
the results stable and independent of the random weight initi-
alization. Our experiments on BRNN and BLSTM were performed
with the open source software library RNNLIB [34].

5.4. Results of experiments

This section presents the results of the experiments on the four
databases: Kondate, IAMonDo, FC, and FA. We performed four
evaluations of the global context based single stroke classifier and
stroke pair classifiers, local context integrated classifiers, and
combined classifiers. Next, we did cross-validation experiments
on the two main databases: Kondate and IAMonDo. After that, we
experimented on Tables_IAM, Diagrams_IAM, FC, and FA. Next, we
examined the computational complexity of the method. At last, we
analyzed some qualitative results. The experiments employed two
single stroke classifiers (a 16-feature classifier and a 26-feature
classifier) and three stroke pair classifiers (a 4-feature ternary
classifier and 19-feature ternary and quaternary classifiers). We
refer to these classifiers as GSC16, GSC26, GPC4, GPC19 and
GPC19Q. Moreover, we used two types of neural network archi-
tectures for each classifier: BRNN and BLSTM. The 16-feature
single stroke classifier modeled by BRNN and the 4-feature
stroke pair classifier modeled by BLSTM are called here
GSC16_RNN and GPC4_LSTM, respectively. The other classifiers
are named similarly.

In experiments, when we compare systems and methods, we
use their means to evaluate the difference. Although the large size
of the testing datasets and especially the large number of strokes
would enable us to make reliable comparisons, we also perform t-
test to evaluate the significance of the difference statistically for
important comparisons. When we compare two of our systems,
we can obtain classification result for every stroke and every
document. We apply the classification to each document page and
validate the difference employing a paired t-test. On the other
hands, when we compare our system with another system in
previous works, often the mean of the classification rate is
reported but the variance is not reported so that validation is
generally difficult. Owing to the special case, however, we can
perform an unpaired t-test with mean and variance values if we
apply the classification to each stroke. In previous works, classi-
fication rates are calculated on the whole testing dataset and the
measurement is the classification result of all the single strokes. In

this case, we can obtain the variance σ2 value from the mean μ
value reported in the previous works as follows:

σ2 ¼ 1
n

Xn
i ¼ 1

xi�μð Þ2 ¼ 1
n

Xn
i ¼ 1

xi2�2
1
n

Xn
i ¼ 1

xiμþ
1
n
nμ2

¼ 1
n

Xn
i ¼ 1

xi�2μμþμ2 when xi ¼ 0 or 1

¼ μ�μ2 ð15Þ
where n is the number of strokes and xi is the classification result
of every stroke (1 for true and 0 for false).

5.4.1. Evaluation of global context based classifiers
In the global context model, which is realized by single stroke

classifiers, strokes can be classified with a binary classifier trained
by BRNN or BLSTM. Table 7 shows the overall, text and non-text
classification accuracies for these single stroke classifiers on
Kondate and IAMonDo. The computational time is the total time
for classification and does not include the time taken for feature
extraction on the entire testing dataset, i.e., 359 pages in Kondate
and 203 pages in IAMonDo.

From the table, we can see that the BLSTM classifiers behave
more stably than the BRNN classifiers. The differences between the
maximum and minimum accuracies of the BLSTM classifiers are
smaller than those of the BRNN classifiers by 1 point. For instance,
the GSC16 classifiers for IAMonDo differ from the BLSTM classifier
by 0.6 points (96.57–97.17%), and from BRNNs by 1.8 points
(94.98–96.78%). The BLSTM classifiers are more accurate although
they are about four times slower than the BRNN classifiers.
Accuracy improves if a larger number of features are extracted.
The BLSTM classifiers with 26 features were the most accurate on
both the databases. On the Kondate database, their mean accuracy
(98.13%) and even their minimum accuracy (97.50%) were better
than the MRF's result (96.61%) in [4]. As for the IAMonDo database,
the mean accuracy (97.56%) and the minimum accuracy (97.30%)
were better than those of the CRF (96.66%) in [5] and those of the
BLSTM using local features (97.01%) in [8]. Moreover, they are
slightly higher than the accuracy of the state-of-the-art method
(97.23%) in [7].

5.4.2. Evaluation of stroke pair classifiers
In order to classify strokes in the local context model, the

stroke pair classifiers were trained using BRNN or BLSTM. In order
to classify pairs of strokes into three or four categories: text:text
(TT), text:non-text (TN) and/or non-text:text (NT), and non-text:
non-text (NN). The performance of these classifiers are listed in
Table 8.

The same as with the single stroke classifiers, the BLSTM
classifiers were more accurate than the BRNN classifiers, but about
four times slower. Although only four simple features were used,
the GPC4 classifiers were comparable to the GPC19 classifiers on
Kondate. With 19 features including symmetrical descriptions, the
quaternary classifiers were slightly more accurate than the ternary
classifiers.

It is noteworthy that the classification accuracy of the text:non-
text or/and non-text:text pairs was very low on the IAMonDo
database containing many short strokes in the graphics and
diagrams. Since the features are related to the size of and the
distance between strokes, the text:non-text pairs are likely mis-
classified as text:text pairs.

5.4.3. Evaluation of local context integrated classifiers
To evaluate the classifiers in the local context model, we

selected the BLSTM classifiers of the single stroke classifications
using 16 and 26 unary features and the stroke pair classifications

Table 7
Performance of global context based classifiers GSCs.

Database Classifier Overall (%) Text
(%)

Non-Text
(%)

Time
(s)

Kondate GSC16_RNN 96.67 (95.35–97.37) 98.67 84.99 0.39
GSC16_LSTM 97.22 (96.59–97.56) 98.81 87.88 1.56
GSC26_RNN 97.98 (97.39–98.46) 99.08 91.47 0.42
GSC26_LSTM 98.13 (97.50–98.69) 99.11 92.41 1.66

IAMonDo GSC16_RNN 95.94 (94.98–96.78) 97.97 87.09 0.37
GSC16_LSTM 96.83 (96.57–97.17) 98.45 89.80 1.52
GSC26_RNN 97.32 (96.86–97.65) 98.49 92.26 0.40
GSC26_LSTM 97.56 (97.30–97.81) 98.58 93.15 1.62
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using 4 and 19 binary features that had the maximum accuracies.
There are three local context models for the stroke pair classifier:
preceding, succeeding, and bidirectional. Hence, we have three
local context integrated classifiers: preceding-model based classi-
fier (PCC), succeeding-model based classifier (SCC) and
bidirectional-model based classifier (BCC) for each pair of unary
features and binary features. Table 9 shows the classification
results obtained by these classifiers.

From these results, it is clear that the LCC classifier using both
preceding and succeeding information in the bidirectional model
(BCC) was more accurate than the one using only the preceding
information (PCC) or succeeding information (SCC) except for
quaternary classifiers using 26 unary features and 19 binary
features, in which case the classifiers using only preceding
information were a little more accurate than the others. The
accuracies of the bidirectional-model classifiers integrating local
contexts with the 16-feature global context based classifiers were
better than the original GSC classifiers alone in most cases. In
particular, the PCC local context integrated classifiers had accura-
cies 98.48% and 97.81%, which were significantly higher than those
of the original global context based classifiers (97.56% and 97.17%,
respectively) with both po0.0001 by paired t-tests on 359 testing
pages of Kondate and 203 testing pages of IAMonDo. This is to
certify that the pairwise stroke features in LCC classifiers have
supplemented the single stroke features in GSC classifiers. The
highest accuracies of the LCC classifiers on Kondate and IAMonDo
were 98.65% and 97.96%, respectively.

5.4.4. Evaluation of combined classifiers
In this experiment, we measured the effect of combining the

global context based classifier GSC and the local context integrated
classifier LCC. We combined the global context based classifier
GSC16_LSTM or GSC26_LSTM with a bidirectional local context
integrated classifier integrating the stroke pair classifier
GPC19Q_LSTM with the single stroke classifier GSC26_LSTM (denoted
by BCC26_19Q_LSTM). The experiment on the four combination rules
was performed without weighting parameters in (12) or (13). Table 10
shows the results.

On both databases, most of combinations were effective since the
accuracies of the combined classifiers, those using the product and

Table 8
Performance of stroke pair classifiers GPCs.

Database Classifier Overall (%) TT (%) TN (%) NT (%) NN (%) Time (s)

Kondate GPC4_RNN 95.51 (93.54–96.71) 98.26 67.42 86.83 0.39
GPC4_LSTM 96.75 (95.59–97.32) 98.67 80.21 89.61 1.54
GPC19_RNN 96.26 (95.25–97.21) 98.86 68.56 88.46 0.42
GPC19_LSTM 97.07 (96.24–97.65) 98.99 79.22 90.36 1.58
GPC19Q_RNN 96.70 (95.74–97.48) 98.86 77.51 71.43 90.00 0.43
GPC19Q_LSTM 97.17 (96.42–97.61) 99.02 81.84 76.11 91.10 1.60

IAMonDo GPC4_RNN 92.86 (90.98–94.71) 97.76 25.78 83.32 0.37
GPC4_LSTM 94.48 (94.02–94.96) 97.73 47.82 88.58 1.47
GPC19_RNN 95.22 (93.97–96.01) 97.84 51.26 91.72 0.40
GPC19_LSTM 95.84 (95.42–96.23) 98.12 61.29 92.05 1.54
GPC19Q_RNN 95.49 (92.95–96.20) 97.91 58.43 52.64 92.12 0.41
GPC19Q_LSTM 95.99 (95.59–96.35) 98.19 64.44 60.58 92.40 1.56

Table 9
Accuracies (%) of local context integrated classifiers LCCs compared with global context based classifiers GSCs.

Database GSC classifier GSC accuracy (%) GPC classifier GPC accuracy (%) LCC accuracy (%)

PCC SCC BCC

Kondate GSC16_LSTM 97.56 GPC4_LSTM 97.32 97.72 97.73 98.26
GPC19_LSTM 97.65 97.94 97.91 98.44
GPC19Q_LSTM 97.61 98.48 98.45 98.48

GSC26_LSTM 98.69 GPC4_LSTM 97.32 98.11 98.11 98.41
GPC19_LSTM 97.65 98.25 98.23 98.55
GPC19Q_LSTM 97.61 98.65 98.64 98.63

IAMonDo GSC16_LSTM 97.17 GPC4_LSTM 94.96 96.71 96.72 97.04
GPC19_LSTM 96.23 97.12 97.04 97.54
GPC19Q_LSTM 96.35 97.78 97.74 97.81

GSC26_LSTM 97.81 GPC4_LSTM 94.96 96.99 96.98 97.27
GPC19_LSTM 96.23 97.38 97.31 97.67
GPC19Q_LSTM 96.35 97.96 97.89 97.93

Table 10
Accuracies (%) of combined classifiers compared with global context based and
local context integrated classifiers.

Database GSC type GSC Acc (%) LCC Acc (%) Combination rule (without
weighting parameters)

SUM PROD MAX MIN

Kondate 16_LSTM 97.56 98.48 98.41 98.61 98.32 98.59
26_LSTM 98.69 98.63 98.97 99.04 98.91 99.00

IAMonDo 16_LSTM 97.17 97.81 97.94 98.02 97.82 98.02
26_LSTM 97.81 97.93 98.21 98.27 98.09 98.30
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min rules were better than those of the global context based
classifiers or the local context integrated classifiers alone. The product
and min rules were equally good and more effective than the sum
and max rules. The combined classifiers of GSC26 and BCC26_19Q
trained using BLSTM were the most accurate on both databases. On
the Kondate database, PROD(GSC26_LSTM, BCC26_19Q_LSTM) had a
correct classification rate of 99.04%, which is higher than the 96.61%
in the previous study [4]. On the IAMonDo database, MIN
(GSC26_LSTM, BCC26_19Q_LSTM) yielded a correct classification rate
of 98.30%, which is also higher than what have been reported in the
literature, i.e., 97.01% reported by Indermuhle et al. [8] and 97.23%
reported by Delaye et al. [7]. Whenwe performed unpaired t-tests for
significance to compare our best systems with systems in previous
works, the classification results of 71,846 strokes on Kondate and
70,927 strokes on IAMonDo was used. The two-tailed p values in all t-
tests are less than 0.0001 so that the differences are considered
extremely significant.

To evaluate the effect of the weighting parameters, we con-
ducted an experiment on the GSC26_LSTM and BCC26_19Q_LSTM
combination using the IAMonDo database. The weighting para-
meters for the four combination rules were optimized on the
validation set using the genetic algorithm. The parameters for the
linear and exponential functions of the text and non-text prob-
abilities retrieved from the global context based and the local
context integrated classifiers are shown in Table 11. The classifica-
tion results of the combined classifiers are shown in Table 12. We
can see that the weighting parameters of the combination had a
little effect. It seems that our method reached the limit of its
capability.

5.4.5. Cross-validation experiments and their results
In order to reduce the risk of a biased dataset division, we

performed four-fold cross validation on IAMonDo and Kondate. On
IAMonDo, we conducted three experiments on three datasets because
the first dataset already had been evaluated in the holdout validation.
On Kondate, we conducted four experiments on four datasets.
We employed the combined classifier PROD(GSC26_LSTM,
BCC26_19Q_LSTM) in all experiments. Since the graphical non-text
strokes account for less than 20% of the total strokes in these
databases, they have less influence on the overall accuracy. For the
extraction of structured graphical elements such as tables, flow charts,
finite automata, etc., however, the accuracy of non-text detection is
important. Hence, in the experiments, we calculated the precision,

recall and f-measure of the non-text detection. Table 13 shows the
results.

Our method achieved overall classification rates of 99.12% and
98.14% on average on Kondate and IAMonDo, respectively. The text
detection accuracies were all over 99%, and the non-text detection
accuracies were all over 94%. Thus, our method was better at
detecting graphics than hierarchical random fields in [14] (preci-
sion around 90% and recall of only 80–85%) in the IAMonDo
database.

5.4.6. Experiments on other databases and their results
We trained and evaluated our method on Tables_IAM and

Diagrams_IAM. We also evaluated it on specific domains: flow
charts (FC database) and finite automata (FA database). The
classification rates together with the precision, recall and f-
measure of the graphics detection on these datasets are listed in
Table 14. With Tables_IAM, since the text strokes account for over
95% and the non-text strokes are mostly straight lines, it is easy for
our method to separate them. The accuracy was 99.88% evenwhen
we used only the global context based classifier GSC16_RNN. As
with Tables_IAM, the FC and FA databases were also easy to learn.
They contain non-text strokes such as curve lines, arrows, circles,
ellipses, rectangles, etc. which could be easily distinguished from
text strokes. Hence, we obtained very accurate results for these
two databases by using the global context based classifiers. More-
over, we achieved overall classification rates of 98.55% and 99.61%
on FC and FA, respectively, when we used the combined classifier
PROD(GSC26_LSTM, BCC26_19Q_LSTM). Not only the overall rates,
but also the text and non-text classification rates were high (over
98%). The accuracies were higher than those of for overall 93.06%,
for text 91.25%, and for non-text 94.87% reported in [33]. Although
Tables_IAM, FC and FA were easy to learn, Diagrams_IAM was hard
to learn because non-text strokes make up nearly 60% of it and

Table 11
Parameter values for weighted combination.

Combination
rule

Linear function
λ1;1; λ1;2 ; λ2;1 ; λ2;2

Exponential function
λ1 ; λ2

SUM 0.205, 0.220, 0.285, 0.500 0.015, 0.030
PROD 0.910, 0.075, 0.290, 0.001 0.235, 0.480
MAX 0.725, 0.155, 0.070, 0.780 0.590, 0.010
MIN 0.600, 0.575, 0.235, 0.575 0.325, 0.650

Table 12
Accuracies (%) of combined classifiers with and without weighting parameters.

Combination
rule

Without
parameters

With parameters of
linear function

With parameters of
exponential function

SUM 98.21 98.30 98.17
PROD 98.27 98.30 98.23
MAX 98.09 98.05 98.20
MIN 98.30 98.26 98.30

Table 13
Accuracies (%) of combined classifiers in four-cross validations.

Database Dataset Overall
(%)

Text
(%)

Non-text

Precision
(%)

Recall
(%)

f-Measure
(%)

Kondate Fold 1 99.34 99.67 97.25 97.97 97.61
Fold 2 99.03 99.75 95.22 98.60 96.88
Fold 3 98.99 99.75 95.01 98.62 96.78
Fold 4 99.11 99.6 96.32 97.74 97.02
Average 99.12 99.69 95.95 98.23 97.07

IAMonDo Fold 1 98.27 98.98 95.19 95.57 95.38
Fold 2 97.80 99.07 91.98 95.61 93.76
Fold 3 98.23 99.18 94.43 96.66 95.53
Fold 4 98.24 98.98 94.46 94.80 94.63
Average 98.14 99.05 94.02 95.66 94.83

Table 14
Accuracies (%) on Tables_IAM, Diagrams_IAM, FC and FA databases.

Database Overall
(%)

Text
(%)

Non-text

Precision
(%)

Recall
(%)

f-Measure
(%)

Tables_IAM 99.88 99.97 98.40 99.46 98.93
Diagrams_IAM 93.36 92.07 94.29 94.30 94.29
FC 98.55 98.66 98.37 97.89 98.13
FA 99.61 99.52 99.71 99.51 99.61
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they have large variations. In this case, the classification rate was
only 93.36%.

5.4.7. Computational complexity
We performed the experiments on a computer with an Intels

Core™ i7-4770 CPU (3.40 GHz). The computational time was
measured on the entire testing dataset of the IAMonDo database
(203 documents). The extraction of 16 and 26 unary features took
0.28 and 2.82 s, respectively. The extraction of 4 and 19 binary
features cost 0.32 and 0.38 s, respectively. The costs of the global
context based and the local context integrated classifiers using
BRNN and BLSTM were 0.89 and 3.23 s and the combination took
just a few milliseconds. In sum, the total time for classifying digital
ink strokes in the 203 documents was 6.43 s, even when the most
time-consuming classifiers such as the combined classifier PROD
(GSC26_LSTM, BCC26_19Q_LSTM) were used. Hence, the time
required for processing each document from the test dataset was
about 38 ms on average, which would not appear as a noticeable
delay in showing the classification. It is faster than the time of
1.53 s reported by Delaye et al. [7] for a classification done on a
similar CPU. The total time for classifying digital ink strokes in the
359 documents of the Kondate database was 9.28 s, evenwhen the
most time-consuming classifiers, i.e., a combined classifiers,
were used.

5.4.8. Qualitative analyses
Fig. 4 presents examples of text/non-text classification results

on the Kondate and IAMonDo databases. They were obtained with
the 26-feature global context based classifier GSC26_LSTM and the
context combined classifier MIN(GSC26_LSTM, BCC26_19Q_LSTM),
which is the classifier combining GSC26_LSTM with the

bidirectional local context integrated classifier with the min-rule
mentioned above. It shows that the combination of the local
context with the global context has reduced errors.

Although accuracies close to 99% have been achieved for text/
non-text classification, some problems remain to be solved. In
particular, we still face problems stemming from 1) a lack of
contextual information when isolated symbols are written sepa-
rately, as shown in Figs. 5(a); and 2) short non-text strokes and
long text strokes as shown in Fig. 5(b). These aspects make text/
non-text classification of free-hand diagrams difficult. We think
that these errors can be reduced with post-processings using
heuristic and handwriting recognition. If non-text strokes are
inside a text line, they can be reclassified as text strokes. If the
recognition scores of a clique of text strokes are small, they can be
converted into non-text strokes. Handwriting recognition seems to
be the ultimate goal with which we could realize segmentation or
classification by recognition. Handwritten graphics recognition is,
however, still a difficult problem since casually hand-drawn
graphics are often outside of the domain.

6. Conclusion

This paper described a novel method for text/non-text classi-
fication of online handwritten documents that is based on a
combination of global and local contexts with recurrent neural
networks. A bidirectional network architecture is used to access to
the complete global context of stroke sequences. Moreover, a
simple but effective model is used for the local temporal context
of adjacent strokes. Global and local contexts complement each
other so that their combination improves the text/non-text classi-
fication of strokes. Our method achieved classification rates of

Fig. 4. Examples of improvements to text/non-text classification. Pages a(1) and a(2) are from Kondate, while b(1) and b(2) are from IAMonDo. a(1) and b(1) are results
classified by GSC26_LSTM while a(2) and b(2) are results classified by MIN(GSC26_LSTM, BCC26_19Q_LSTM). Text strokes are shown in black, non-text strokes are shown in
green, and misclassified strokes are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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99.04% on the Kondate database of Japanese digital ink documents
and 98.30% on the IAMonDo database of English digital ink
documents. It outperformed other state-of-the-art methods from
the literature.

Our method was extremely accurate (about 99%) on the
Kondate database, but faced challenges on the IAMonDo database,
especially on the extracted sub-database, Diagrams_IAM. In this
database, the number of non-text strokes is larger than the
number of text strokes. We plan to investigate other global
features to improve the accuracies of the single stroke classifiers
and stroke pair classifiers, as well as other frameworks for
combining global and local contexts to enhance the overall
performance. The pairwise stroke features can be integrated
directly. For example, it can be used as weights of the connections
between two strokes in a unique network. We also plan to
investigate the range of global context. We have considered the
global context in the range of a document page since each page
stores handwriting on some topic by a single writer. If a page
includes various objects, or if a series of pages are homogeneous,
however, different ranges of global context may produce better
performance. Furthermore, we will try to use local features and
the strategy of mode detection to make the task of text/non-text
classification run in real-time.
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