
Supply Chain Management League (SCML)

Challenge

Design and build an autonomous agent that negotiates on behalf of a factory
manager situated in a supply chain management simulation.

The goal of a factory manager in SCML is to maximize its profit given its private
production capabilities by negotiating trades with other agents. A factory manager can
engage in several negotiations simultaneously, for which its utility functions are in
general interdependent. These negotiations, and any ensuing contracts, are bilateral.
Moreover, they are private to the agents involved.

Negotiation Protocol

Participating agents are factory managers that control factories with predefined
manufacturing profiles which are revealed privately to each agent at the start of each
simulation. Factory manager agents need to negotiate bilaterally with other agents to
buy the necessary inputs to their manufacturing process, and to sell the outputs.

All negotiations are carried out via the alternating offers protocol. This protocol specifies
that two negotiators take turns making offers. One agent starts the negotiation with an
opening bid, after which the other party can take the following actions:

1. Accept the offer

2. Make a counter offer, thus rejecting and overriding the previous offer

3. Walk away, thus declaring an end to the negotiation without having reached an

agreement

This process is repeated until either an agreement is reached, or the deadline arrives.
To reach an agreement, both parties must accept the offer. If no agreement has been
reached by the deadline, the negotiation fails.

A single simulation runs for a predefined number of steps with an overall time limit of
two hours. All negotiations are conducted for a predefined number of steps/turns of the
alternating offers protocol (with a predefined time limit on each).

Factory manager agents are reset after each simulation. This means that they cannot
learn from previous simulations. They can, however, accumulate information about
agents during a simulation, as they know their negotiating partners’ names.

Platform

Entrants to the competition will develop and submit an autonomous agent that runs on
NegMAS. NegMAS is a Python-based negotiation platform in which you can create
simulated worlds, like the SCM world, populated with agents capable of engaging in
multiple negotiations. The platform allows you to run the SCM world with the same
settings as the ones employed in ANAC 2019, or with personalized settings.

In NegMAS, the alternating offers protocol is implemented as a special bilateral case of
the multilateral Stacked Alternating Offers Protocol (slightly modified to allow for a
limited number of rounds).

NegMAS also includes an implementation of a greedy factory manager agent, which
can serve as a sample implementation of an agent to guide participating teams.

The greedy factory manager agent is written in Python. Java can be also used to write
factory managers, using JNegMAS, a Java interface to NegMAS, but a Python
installation will also be necessary for testing purposes. Python is the recommended
development language for SCML.

The official version of NegMAS (and JNegMAS) be released on April 1st 2019.

http://www.yasserm.com/negmas/
https://link.springer.com/chapter/10.1007/978-3-319-51563-2_10
http://www.yasserm.com/negmas/api/negmas.apps.scml.GreedyFactoryManager.html
https://github.com/yasserfarouk/jnegmas/

Evaluation

There will be three separate competitions in the 2019 SCM league.

In the first, the basic competition, at most one instantiation of each team’s agent will run
in each simulation. In some of these simulations, all the other agents will be greedy
factory manager agents. In others, agents submitted by other teams will also participate,
but again at most one instantiation of each.

In the second, the collusion competition, multiple instantiations of the same team’s
agent may run during a single simulation (with multiple greedy factory manager agents
as well). The exact number of instantiations of each will vary across simulations, and
will not be announced in advance. In this competition, it is possible for instances of the
same agent to try to collude with one another to corner the market, or exhibit other
collusive behaviors.

The final, the sabotage competition, is intended to uncover fragile aspects of the SCML
design. Teams who enter this competition should try to sabotage the market, for
example, by preventing trades, or by negatively impacting the profits accrued by others.
Sabotaging agents will not compete against one another directly; they will be evaluated
independently in the presence of non-sabotaging agents only. Furthermore, they will be
excluded from the other two competitions.

An agent’s performance will be measured by its score. In the basic and collusion
competitions, an agent’s score will be the average profits accrued by all its factories in
all its instantiations in all simulations. In the sabotage competition, agents’ profits will not
factor into their score; only their ability to sabotage the market/game will matter.

The three competitions will be conducted in two rounds, a qualifying round and a final
round. All entrants that are not judged to break any of the SCML and ANAC submission
rules will be entered into the qualifying rounds. Top-scoring agents in the qualifying
round will then be entered in the final round.

The teams that built the top-scoring agents will be notified in June, with the final results
and awards announced at IJCAI 2019. It is expected that finalists will send a
representative to the ANAC workshop at IJCAI 2019, where they will be given the

opportunity to give a brief presentation describing their agent. Three awards will be
announced at IJCAI 2019 (with associated monetary rewards) corresponding to the
three competitions (basic, collusion, and sabotage).

The organizing committee will determine the number of simulations needed in each
round to ensure a fair comparison among all submitted agents. All participating agents
that achieve scores that are not statistically different from the winners’ will be inducted
into the SCM league’s hall of fame.

Submission (Deadline: June 7th, 2019 AoE [UTC -12])

Participants must submit the following on or before the deadline:
1. Team member names, affiliations, and contact information.
2. Agent source code (in a .zip package) for python agents, and both source code

and compiled class files for Java agents (in a zip or jar file).
3. Academic report describing their agent.

Submission website: Submissions will open on April 10th, 2019. Return here at or
after that time for the submission link.

Submitted code and the academic report should be considered to be in the public
domain, and may be incorporated in full or part in future releases of NegMAS and/or
JNegmas, or any other media. In such cases, all team members will receive proper
attribution.

Academic Report: Each participating team must prepare a 2 page report describing the
novel aspects of their agent according to academic standards (consider it an extended
abstract). This report will be evaluated by the organizers of this league, but will not
affect the possibility of winning as long as the agent is not judged to be a simple
repetition of an existing agent. Submission of this report is an integral part of the
submission process, and agents without an associated report will be disqualified.

At a minimum, the academic report should address the following points:

https://pypi.org/project/negmas/
https://github.com/yasserfarouk/jnegmas/

● Negotiation choices: how your agent chooses what to negotiate about, when,
and with whom

● Utility function(s): how your agent calculates its utility for the various outcomes
of its negotiations

● Simultaneous negotiations coordination: how your agent coordinates its
behavior among multiple simultaneous negotiations (if it does)

● Risk management: any measures your agent takes to alleviate the risks
involved in trading with other agents

● Evaluation: evaluate the performance of your agent against the built-in greedy
factory managers.

● Collusion (If employed): Did your agent employ a collusive strategy? If so, how,
and was it effective in your evaluations?

● Sabotage (If employed) / Design loophole exploitation (Optional): Did your
agent try to sabotage other agents or exploit loopholes in the SCML design? If
so, how, and was it effective in your evaluations? For the benefit of the agent
negotiation research community, please provide some suggestions that would
render your agent’s nonconforming behavior less effective in future renditions of
SCML.

Rules of Encounter

Agents will be disqualified for violating the spirit of fair play. In particular, the following
behaviors are strictly prohibited:

1. Accessing any information about the simulation or other agents that is not
describe in Section 2.1 “information revelation” of the detailed game description.

2. Accessing/modifying any “private” method/member in python (these variable
names should all be indicated by an initial underscore).

3. Hacking or exploiting bugs in the software.
4. Communicating with the agent during the competition.
5. Altering the agent during the competition.

http://www.yasserm.com/scml/scml.pdf

Moreover, agents that wreak havoc on the simulator (intentionally or otherwise) may be
disqualified. For more information, see http://ii.tudelft.nl/anac/.

Organizers of the ANAC 2019 SCML competition will enforce these rules. We also
reserve the right to disqualify agents under ANAC’s usual circumstances.

Finally, note that ANAC’s competition rules allow multiple entries from a single
institution, but require that each agent be developed independently.

Resources

For more information about SCML, please refer to the following links:

1. An overview of the SCM world/competition: Here, you can find an overview of the
SCM world, the agents that inhabit it, and competition rules.

2. Project skeleton for starting up your development: You are not required to use
this skeleton, but they should be helpful as you get started.

3. A detailed description of the SCM world: Here, you can find a more detailed (and
formal) description of the SCM world, including behavior of the built-in agents.
This document also describes the specific settings of the simulator for the ANAC
2019 SCML competition.

4. Participation Tutorial: Here, you can find a step-by-step description of the
process of developing, testing and submitting an agent for the ANAC 2019
SCML competition using python. (Available also as a downloadable Jupyter
Notebook.)

5. NegMAS Documentation: Here, you can find complete documentation of the
NegMAS library.

6. NegMAS Source Code on GitHub: Here, you can (but are by no means required
to) read the source code of the NegMAS library, which is released under the GPL
2.0 license.

7. NegMAS PyPi Page: Here, you can find the official release of the NegMAS
library, and download the latest version (or just use pip install as described here).
Version 0.2.0 (available April 1st, 2019) will be compatible with the distributed
version.

http://ii.tudelft.nl/anac/
http://www.yasserm.com/scml/overview.pdf
http://www.yasserm.com/scml/scml.zip
http://www.yasserm.com/scml/scml.pdf
http://www.yasserm.com/negmas/tutorials/07.develop_scml_agent.html
http://www.yasserm.com/negmas/_downloads/c28b38a43ab3f15b99d32192b8b7ea43/07.develop_scml_agent.ipynb
http://www.yasserm.com/negmas/_downloads/c28b38a43ab3f15b99d32192b8b7ea43/07.develop_scml_agent.ipynb
http://www.yasserm.com/negmas/
https://github.com/yasserfarouk/negmas
https://pypi.org/project/negmas/
http://www.yasserm.com/negmas/installation.html

8. JNegMAS Source Code: Here, you can find the source code for the Java
interface. Version 0.2.0 (available April 1st, 2019) will be compatible with the
official league platform. Please note that you still need to install NegMAS to run
simulations, even if you are developing in JNegMAS.

9. The JNegMAS jar file is available at the Maven Central Repository.
10.JNegMAS Documentation: Simple documentation of the Java interface.

Questions and Answers

Please check our FAQ. You can post your questions there (preferable), or address any

concerns you prefer remain private to Yasser Mohammad.

Organizing Committee

● Yasser Mohammad, NEC-AIST & Assiut University (main contact)

● Katsuhide Fujita, Tokyo University of Agriculture and Technology & NEC-AIST

● Amy Greenwald, Brown University & NEC-AIST

● Mark Klein, MIT & NEC-AIST

● Satoshi Morinaga, NEC-AIST

● Shinji Nakadai, NEC-AIST

https://github.com/yasserfarouk/jnegmas/
https://search.maven.org/search?q=a:jnegmas
http://javadoc.io/doc/com.yasserm/jnegmas
http://www.yasserm.com/scml/faq.html
mailto:y.mohammad@aist.go.jp

Important Dates

Official release of the league platform (python and Java) April 1, 2019

Website opens for submission
A confirmation email will be sent upon successful submission (~2 business
days)

April 10, 2019

Submission deadline
Servers may be busy on the last day. Please do not wait until the last minute

June 7, 2019

Notification to finalists
A representative of each finalist team is expected to attend ANAC 2019 @ IJCAI

June 15, 2019
(tentative)

Event
Announcement of winners and league report during ANAC 2019

mid August, 2019
(during IJCAI)

.

Sponsors

