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SUMMARY In this paper, a dynamic constructive algorithm
for fault tolerant feedforward neural network, called DCFTA, is
proposed. The algorithm starts with a network with single hid-
den neuron, and a new hidden unit is added dynamically to the
network whenever it fails to converge. Before inserting the new
hidden neuron into the network, only the weights connecting the
new hidden neuron to the other neurons are trained (i.e., up-
dated) until there is no significant reduction of the output error.
To generate a fault tolerant network, the relevance of each synap-
tic weight is estimated in each cycle, and only the weights which
have their relevance less than a specified threshold are updated
in that cycle. The loss of a connections between neurons (which
are equivalent to stuck-at-0 faults) are assumed. The simulation
results indicate that the network constructed by DCFTA has a
significant fault tolerance ability.

key words:  feedforward neural network, dynamic constructive
algorithm, fault tolerance, DCFTA

1. Introduction

Multilayer Neural Networks (NNs) are now widely used
in pattern recognition/classification applications. It has
been shown that feedforward networks are capable of
implementing any input-output mapping provided that
they have a sufficient number of hidden neurons. Nev-
ertheless, the performance of the network depends on
many arbitrary chosen parameters like learning algo-
rithm, weights initialization, the number of hidden neu-
rons (i.e., network’s size), and the activation function of
neurons[1].

Typically, NNs training schemes require network
size to be set before learning is initiated[2]. A fun-
damental question that raises when talking about fault
tolerance ability of feedforward neural networks is , how
many hidden neurons are necessary to be fault tolerant.
A number of researchers have focused their attention ei-
ther on the optimization of the number of hidden neu-
rons necessary for the NN to learn a specified task, or
on the fault tolerance enhancement of NNs with a fixed
number of hidden neurons.

So far, mainly fixed architectures with a fixed num-
ber of hidden neurons have been considered for feed-
forward neural network. One of the few exceptions is
the cascade architecture proposed by Fahlman[3],[4]
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and its versions[5],[6]. However the cascade correla-
tion proposed by Fahlman is not a simple multilayer
network since each new neuron is itself a new layer,
and the number of layer is equal to the number of hid-
den neurons, thus, in case of a large network, the time
necessary for an input to propagate to the output may
be critical. One of the characteristics of conventional
single hidden layer network is its parallel processing
architecture (i.e., the neurons in a given layer can pro-
cess in parallel), thus the delay is minimal and it can be
used in the applications that require a quick response.

Although fault tolerance is frequently cited as an
important property of NNs[7], the loss of single weight
is frequently sufficient to completely disrupt a learned
function. The backpropagation learning algorithms do
not make optimal use of redundant resources. Recently
extensive research has proved that NNs are not intrin-
sically fault tolerant, and the fault tolerance has to be
enhanced by adequate scheme|[8].

A number of methods hdve been proposed to en-
hance the fault tolerance ability of NNs. In[9], A.F.
Murray et al. analyzed the effect of analog noise injec-
tion on the synaptic weights during multilayer neural
network training on the fault tolerance property. Pro-
cedures to build fault tolerant NNs by replicating the
hidden units are presented[8],[10], and the minimum
redundancy required to tolerate all possible single faults
is analytically derived [10]. Using error correcting code,
a fault tolerant design vwhich can correct an error at the
output layer neuron was presented[11]. A learning al-
gorithm for fault tolerant NNs is proposed in[12].

However, a constructive algorithm that incorpo-
rates a mechanism that makes the constructed network
more fault tolerant has not been proposed yet. In this
paper, assuming that a physically plausible type of fault
is the loss of a connection between two neurons, we pro-
pose a dynamic constructive algorithm for the feedfor-
ward network called DCFTA. This algorithm estimates,
in each learning cycle, the relevance/sensitivity of each
weight to the output error, and updates only the weights
which have their relevance less than a specified thresh-
old. And whenever the learning process stagnates, a
new hidden neuron is added to the network.

This paper is organized as follows. First, in Sect. 2
we present a dynamic constructive learning algorithm
for feedforward neural network. In Sect.3, we incor-
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porate in the constructive algorithm a mechanism that
produces a fault tolerant network. The simulation re-
sults that evaluate the proposed algorithm are presented
and discussed in Sect. 4, in this section we compare the
proposed technique to the method of M.D. Emmerson
et al. called augmentation[7)].

2. Dynamic Constructive Algorithm: DCA

In this section a dynamic constructive algorithm (de-
noted by DCA) is presented. The aim is to generate
NNs with nearly minimum number of hidden neurons.
DCA is extended to be fault tolerant in the next section.
Since the number of inputs and the number of outputs
are fixed by the problem and the input/output represen-
tation that the designer has chosen, they are also fixed
in this paper.

It is intended to construct dynamically a NN where
the input layer is fully connected to the hidden layer
which is also fully connected to the output layer. There
are also a bias input and a bias hidden, permanently set
at 1.

The output o, of the jth neuron is given by

K
oj =f (Z"Uijoz) ) (N
=0

where w;; is the synaptic weight corresponding to the
connection from the ¢th neuron in the previous layer to
the jth neuron, o; is the output of the ith neuron, K is
the number of neurons that feeds the jth neuron (which
is equal to the number of neurons in the previous layer),
the bias wo; is treated as a synaptic weight connected
to a fixed input op = 1, and f is the sigmoid activation
function given by

1

flz) = o= (2)

The hidden neurons are added dynamically one
by one in DCA. Each new hidden neuron receives
a connection from each of the network’s inputs. In
the opposite of the cascade correlation algorithm [3],
all the input-to-hidden and hidden-to-output weights
are trained repeatedly, not only the hidden-to-output
weights.

The DCA consists of cyclic repetition of three
phases, Train-Normal-Net (denoted by Pryn), Train-
Candidates (Pr¢), and Neurons-Addition (P 4), after
Initialization phase. The phases are explained in detail
later.

The Initialization phase initializes the parameters
such as the learning rate and the values of the weights.
Pryn starts with a single hidden neuron and all the
weights are trained with the backpropagation algo-
rithm which minimizes the mean-squared error (objec-
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Fig. 1 The network architecture. A candidate neuron is cre-
ated temporarily and the candidate weights on the weights on
the dashed lines are trained while all the others are frozen.

tive function) given bellow
(& — o), 3)

where P is the number of patterns in the training set,
K is the number of neurons in the output layer, and
t? is the target output and of, practical output of the
kth neuron for the pth pattern. One training cycle cor-
responds to the presentation of all the patterns in the
training set to the network just once. When no signifi-
cant error reduction has occurred after a given number
of cycles T, we test, if the convergence criteria is sat-
isfied the DCA stops; otherwise there must be a resid-
ual error that should be reduced. To achieve this, Pr¢
starts, and an independent neuron (a candidate) is cre-
ated (Fig. 1). This neuron is connected to all the input
neurons and all output neurons (it behaves like a hidden
neuron) and only input-to-candidate and -candidate-to-
output weights are trained to minimize the output er-
ror. All the previously trained weights are temporary
“frozen.” Ppc stops when there is no significant reduc-
tion of the output error after T,,nq cycle. Then Py a
starts, and the candidate neuron is definitely added to
the network as a normal hidden neuron. And the whole
network is then trained in Ppypy. This process is re-
peated until the convergence criteria is satisfied or the
maximum network size is reached.

In Prc, it is possible to train all the weights in-
cluding the previously trained weights. However, since
the candidate weights are set randomly, it is assumed
that they should be brought to nearly the same level of
trainability as the previously trained weights before be-
ing definitely added to the network as a normal weights.

Figure 1 presents an example where a network with
four input neurons and two output neurons is being dy-
namically constructed. In the phase Pryy (1 and 3)
all the weight are updated, in the phase Ppr¢o only the
weights on the dashed connections are updated.
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The advantage of DCA is that it can automatically
find the size of the NN without specifying it before the
training begins.

Instead of a single candidate neuron in Prg, it is
generalized to train a pool of candidate neurons as in
Fehlman cascade-correlation algorithm, so that the gen-
eralized DCA can select the best neuron among the pool
after the Prc training phase. Each candidate with dif-
ferent set of initial weights, is temporarily connected
to the output of every input neuron, and its output is
also temporarily connected to every neurons in a virtual
output layer, where a virtual output layer is a tempo-
ral layer of the same size as the original output layer
(i.e. they have the same number of neurons). Figure 2
shows an example of two candidate neurons with the
corresponding virtual output layers. The output v} of
the kth neuron of the virtual layer is given by

vy = f(resth +wgoP), 4)

where w;, is the weight corresponding to the connec-
tion between the candidate neuron ¢ and kth neuron of
the virtual output layer, of is the output of the candi-
date neuron, and rest} is a resulting input to the kth
neuron from the actual network when the pth pattern is
presented to the network. rest} is given by

H

resth = Z WhiOh (3)
h=0

where H is the number of hidden neurons in this stage of
the learning process, wpr the weight on the connection
from the Ath hidden neuron and kth output neuron, and
o} is the output of the hth hidden neuron. The output

of of a candidate neuron is give by

N
of = f wa?) : (6)
=0

where w,. is the weight on the connection from the ith
neuron of the input layer to the candidate, x; is the ith
element of the input vector, and N is the number of
neurons in the input layer.

In the Prc (Train-Candidate) phase, for each can-
didate neuron, the input-to-candidate and candidate-to-
virtual weights are trained to minimize the output error
given by

1 P K
Ecand = ﬁ Z
p=1lk

Each candidate is trained until there is no significant
reduction in its corresponding error E.uq4, after Tegng
cycles. The Prc phase stops when there is no signif-
icant reduction in any F..,q. Among the candidate
neurons, the one with the minimum output error E.gpq
becomes a new hidden neuron and all the other hidden

(tF —of)2. (N
0
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Fig.2 A pool of two candidate neurons is created temporarily,
with the corresponding virtual output layers. The candidate 1 is
selected and incorporated into the network.

neurons, temporal virtual output layer and all the tem-
poral weights not related to the new hidden neuron are
removed from the network. Once the new hidden neu-
ron is inserted in the network in Py 4, all the weights are
trained to minimize the normal output error in Ppryy.

3. Dynamic Constructive Fault Tolerant Algorithm:
DCFTA

3.1 Fault Model

Fault tolerance is frequently cited as an important prop-
erty of NNs, however, the loss of a single weight is fre-
quently sufficient to completely disrupt a learned func-
tion. A physically plausible type of fault is the loss of
connection between two neurons (open faulf)[7], this
relates to the loss of an arc in a directed graph which
abstractly represents the topology of NNs[16]. This
fault is equivalent to the case when the synaptic weight
is set at 0, which is equivalent to the conventional stuck-
at-0 type. This fault is assumed in this paper.

The fault tolerance metric adopted is the percent-
age of recognized patterns as function of the percentage
of faulty weights in the network (which measures how
badly the network’s performance degrades as a function
of the percentage of faulty weights).

The output of the neuron £ in the output layer is
classified as follows:

H
op =1 if a:ij;;O§>0,
§=0
H
oz =0 if o= ijkof < 0. (8)
j=0

The output is considered wrong if it switches from 1 to
0 or from 0 to 1, this happens if the sign of o changes.
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32 DCFTA

In the previous section, a dynamic constructive learn-
ing algorithm DCA is proposed. DCA generates a net-
work with nearly minimum architecture. In this sec-
tion a fault tolerant algorithm based on DCA will be
presented, the algorithm is called dynamic constructive
fault tolerant algorithm (DCFTA). Actually the train-
ing procedure starts by setting the weights at small ran-
dom values. During the training the weights are mod-
ified/updated to minimize the error function and no
fault tolerant mechanism is incorporated. The aim of
this research is to build DCFTA which incorporates a
fault tolerance mechanism in the training/construction
process (Pryn/Prc) in DCA.

Although fault tolerance is frequently cited as an
important property of NNs[15], the loss of single weight
is frequently sufficient to completely disrupt a learned
function. As the networks starts from a set of weights
with small values, a loss of single connection (i.e., stuck-
at-0 of the corresponding weights) is not likely to in-
fluence the network output much in early stage of the
learning process (the details are given in the Appendix).
To maintain this property, we propose not to update the
weights whose relevances are greater than a given thresh-
old, and the weights whose relevances are smaller than
the threshold are updated using the backpropagation
algorithm.

In this paper the relevance R(w;;) of a given weight
w;; is defined as the maximum error caused at the pri-
mary output by the stuck-at-fault of this weight. It is
given by

Rwij) = Maz |0 (wi;) ~ o (wh) |, )
where of(w;;) is the practical output of the kth neu-

f

ron in the output layer, of (w?.) is the output when the
P y k p

3
synaptic weight w;; is stuck at a faulty value wlfj, and
| | denotes the absolute value of z. The maximum is
over the set of all primary output neurons K and the set
of all training patterns P. In the same way we define

the relevance of a candidate weight wy; as follows

cy __ D c D f
R(wij) = pé\g%gK | Uk(wij) - Uk<wij) B (10)

where v (wg;) is the output of the kth neuron of the vir-
.
synaptic weight wy; is stuck at a faulty value wlfJ The
relevance R(w;;) is an indication of the importance of
the weight w;; to the network. Note that the output
vi(wzfj) is compared to the practical output rather than
the theoretical output.

The relevance of any weights R(w;;) can be evalu-
ated exhaustively by setting w;; to 0 and applying all
the training patterns to the NN and evaluating the max-

imum error at the primary output. However the time for

tual output layer, v} (w;,) is the virtual output when the
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exhaustive evaluation of the relevance can be very long
and impractical, since it requires a forward propagation
of all the training patterns for each and every synaptic
weight.

To avoid the long evaluation time, the relevances
are estimated in the training phase using the Taylor ex-
pansion of the output around fault-free weights in the
same way as in[12],[18].

Now that the effect of the stuck-at-fault is estimated,
we propose, in both phases Train-Normal-Net (Pryn)
and Train-Candidate (Pr¢), to update only the weights
which have their relevance less than a specified thresh-
old 6. By doing so, the constructed network will be
fault tolerant.

The DCFTA can be summarized as follows:

Step 1. (Initialization)
. initialize the weights of the network with
single hidden neuron
. fix the training parameters
. fix the threshold 6

Step 2. (Train-Normal-Net. Pryy)
for each cycle do

. calculate the relevance of all weights

. update all the weights w;; which satisfy
the condition R(w;;) < 6

. if the learning converges or the max-
imum network size is reached, STOP,
otherwise continue

. if no improvement after T cycle, go to
Step3, otherwise go to Step 2.

Step 3. (Train-Candidates: Prc)
. create a pool of candidate neurons
. initialize the weights on the connection
to and from the candidate neurons
1: for each cycle do
. calculate the relevance of the candi-
date weights wg;
. update the weights w;; which satisfy
the condition R(wg;) < 0
. if no improvement after T,,,4 cycle, go to
Step 4, otherwise go to 1

Step 4. (Neuron Addition: Py )
. select the best candidate neuron Cj pro-
ducing the minimum error F.qpq4
. add this neuron to the original network,
then go to Step 2.

4. Experimental Results

In this section the proposed DCFTA is evaluated. It is
shown that DCFTA produces a network that exhibits
better fault tolerance abilities. All the experiments re-
ported in this paper were run on Sun UltraSparc AS
7000 workstation.
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4.1 Mechanical Parts Classification

This problem consists of classification of mechanical
parts into seven classes based on similarity feature[17].
The training set consist of 19 mechanical parts, each
part is presented on 6 x 9 pixels. The DCFTA starts
with a network with a single hidden neuron, then the
hidden neurons are added one by one following the
algorithm given in the previous section. The learning
stops when the network is able to classify all the 19
parts. The initial weights are randomly set to values
that are uniformly distributed in [—0.5,0.5]. A pool of
five candidates is used during the DCFTA.

As the results depend on the weights set from which
the training phases start, the algorithm was run hundred
times for each value of the threshold 6. In this exper-
iment, the number of hidden neurons generated by the
DCFTA are almost two times larger than that generated
by DCA (i.e., it has double number of hidden neurons).
For fair fault tolerance comparison, we investigate the
networks with the same size (i.e., same number of hidden
neurons). In the case of mechanical parts classification
problem, the network with 6 and 8 hidden neurons are
investigated.

M.D. Emmerson et al. proposed to train a network
with small number of hidden neurons then construct
an augmented network by duplicating the hidden neu-
rons[7]. Since the DCFTA is a constructive method, we
propose to compare it to the method of M.D. Emmerson
et al. The networks with 3 and 4 hidden neurons are
trained, then the augmented NNs with 6 and 8 hidden
neurons are constructed. After the training has been
finished, the network’s tolerance to damage is assessed.
As the results depend on the weights from which the
training process is initiated [13],[14], hundred experi-
ments were made for each network with different initial
weights.

The fault tolerance of the networks is assessed by
setting at fault a number of randomly selected weights,
then the patterns of the training set are applied, and
the percentage of recognized patterns is assessed. Since
some links are more significant than others, the pro-
cess was repeated 200 times for each number of faulty
weights and the results are averaged.

The simulation results are presented in Fig.3 and
Fig.4 for the networks 54-6-3 and 54-8-3, respectively,
with § = 0.2 and 8 = 0.3, where n;-ng-no denotes a
NN with n7, ng, and no neurons in the input layer,
hidden layer, and output layer, respectively. The Consé
represents the NN generated by DCFTA. The FixAug
represents the NNs 54-3-3 (respectively 54-4-3) trained
by BP algorithm, then augmented[7]. ConsAug repre-
sents the NNs 54-3-3 (respectively 54-4-3) constructed
by DCA, then augmented, and for reference, we plot
= oo, Hy = 6 (respectively § = oo, Hy = 8) which rep-
resents the networks with prefixed architecture 54-6-3
(respectively 54-8-3) trained with standard backpropa-
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gation algorithm. The results show that the recognition
rate of the NNs degrades faster as the value of 8 in-
creases. It can be seen that, with 8 = 0.2 almost the
best fault tolerant networks among NNs with the same
number of hidden neurons are obtained. It can be seen
also that constructed then augmented networks are less
fault tolerant. It is possible to use a smaller value of
f, and get better fault tolerant NN, however, with a
smaller value, the build in NN becomes larger, and the
comparison with smaller network is not fair.

4.2 Characters Recognition Problem

The second application consists of characters recogni-
tion, the 26 characters from A to Z presented on 7 x 7
binary image plane are considered. The networks have
49 neurons in the input layer, and 26 neurons in the
output layer.

The DCFTA algorithm was run hundred times for
each value of the threshold 6. As expected, in many
times the network generated by the DCFTA is larger
when the fault tolerant mechanism is incorporated. The
number of hidden neurons built into the network varied
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between 8§ and 13 with a majority of 9 hidden neurons.
To compare objectively the fault tolerance of the net-
works, we investigate the networks with the same size,
that is the network with 9 hidden neurons.

After the training has been finished, the network’s
tolerance to damage is assessed.

The simulation results are presented in Fig.5 for
the NNs with different values of . § = co represent the
NN constructed without any constraint (i.e. no fault
tolerant mechanism). The results show that the recog-
nition rate of the NNs degrades faster as the value of
6 increases. The best fault tolerant network is obtained
when 8 = 0.3. Tt is possible to use a smaller value of 6,
however, with a smaller value, the build in NN becomes
larger and it is difficult to get a network with 9 hidden
neurons.

5. Analysis

In this section, the effect of the proposed fault tolerant
mechanism on the size of generated networks and the
output error during training is analyzed.

5.1 Network Size

By forcing the weights to have a relevance less than
a specified threshold, the DCFTA generates networks
with larger number of hidden neurons. It is interest-
ing to compare the size of the generated networks as
function of the threshold 8. Figure 6 shows the number
of networks generated by the proposed DCFTA with
different value of 6 in the case of mechanical parts clas-
sification problem. For each value of 6, a hundred NNs
are generated, and the figure shows how many NN types
with a certain number of hidden neurons are generated.
Tt can be seen that, when 6 is set to a small value, the
size of the networks tend to be large, and if 6 has a large
value, the generated networks tend to be of small size
and less fault tolerant. It is suggested to use a medium
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threshold ¢ € [0.2,0.3] to construct a fault tolerant net-
work with reasonable size.

5.2 The Output Error

We assumed that whenever no significant error reduc-
tion has occurred after a given number of cycles Ty,
there must be a residual error that should be reduced.
To achieve this, an independent neuron (a candidate)
is dynamically created, then inserted into the network.
It is interesting to analyze the effect of the insertion of
a new hidden neuron on the mean-squared error. Fig-
ure 7 presents the mean-squared error as function of the
learning cycles for both § = oo (DCA) and § = 0.3
(DCFTA) in the case of mechanical parts classification
problem. It can be seen, specially for § = co, how
the output error changes when a new hidden neuron
is inserted. From Fig.7 we can realize also that using
the fault tolerant mechanism with § = 0.3 increases the
number of cycles by almost 50%.
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6. Conclusion

In this paper, a new dynamic constructive fault tolerant
algorithm (DCFTA) for neural network is proposed.
The algorithm starts with a network with single hidden
neuron, and a new hidden neuron is added dynami-
cally to the network whenever it fails to converge (i.e.
learn the task). To generate a fault tolerant network, the
relevance of each synaptic weight is estimated in each
cycle, and only the weights which have their relevance
less than a specified threshold are updated in that cycle.
The simulation results indicate that the networks con-
structed by DCFTA have a significant fault tolerance
abilities.

Since it is difficult in practical applications to know
a priori the network’s size which can learn the task, the
proposed constructing algorithm presents a tool to con-
struct dynamically a nearly minimal network, with bet-
ter fault tolerance property, starting from a net with a
single hidden neuron.
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Appendix

In [18], we have derived the relevance as function of the
weights, the output of both hidden and output neurons,
and the network’s input. In the following, it will be
shown that when the weights have small values, a loss
of single connection, which is equivalent to stuck-at-0
of the corresponding weight, is not likely to influence
the network output.

Using the Taylor expansion to the second order
as in [12] and [18], the maximum error caused at the
primary output neurons, when w;; is stuck-at-0, is the
relevance of w;;, and it is given by the following equa-
tion.

4 2 92 p
8ok wzg 15} Oy

—Ws 2 |
Ow;; 2 ow;

R(w;j) = Max

(A-1)

where o} is the kth practical output which is a mul-

tivariable function depending on the weights. All the
differentials in Eq. (A-1) can be calculated as functions
of the outputs of hidden neurons and the network’s out-
put, which are all available during training.

In the following z7, y? and o} denote the output
of ith neuron in the input layer, the output of jth neu-
ron in the hidden layer and the output of kth neuron
in the output layer for the pth pattern, respectively. wu;;
an input-to-hidden weight and wj, a hidden-to-output
weight.

The sigmoid activation function has the following

properties:

f'=@) = f(=z)(1 = f(z)).
0< f(z) <1 for any value of z.

(A-2)
(A-3)
Without loss of generality, let’s calculate the rele-

vance of a particular hidden-to-output weight w;yr, and
a particular input-to-hidden weight u; ;.
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A.l 1In the Case of Hidden-to-Output Weight w;, s,

The relevance of wj,, can be written as follows [18]:

R(wjgk,) = Mazx —wjokoyﬁoogo(l — OZO)

2
ws .
ST yptor (1—af ) —2ef)| (A4
Then we can write the following inequality
R(wjoko) <| Wioko | Moax | yjooﬁo(l - Oio) |
wy i
+ 20 —=L Maz | yjooko(l —op (1 =20, ) |.
(A-5)

All the neuron’s outputs are generated using the sig-
moid function, thus the satisfy the following condition
0 <y; <1and0 < of < 1. Using this property the
above inequality can be written as follows

R(wjoko) <| Wigko | Maz ‘ Oio(l - Ogo) |

w?

t0Jo
+—2—Maw | op (1—0f J(1 =20} )|. (A-6)
With simple calculation we find that Maz | o} (1 —
oio) |=0.25 and Max | oio oko)(l 20k ) | 9.0963.
Then the relevance of wj,x, satisfies the followmg in-
equality
w2

R(wjor,) < 0.25 | wjgk, | +0.0963%. (A7)
It is clear that if the weigh w;,x, has a small value, the
relevance is small.

A.2 In the Case of Input-to-Hidden Weight v, ;,

The relevance can be written as follows:

R(uigjo) = Maz| —uq 4o 25 wioryh, (L—45 Jop (1-07)
2

Uy 2
- g}“wfowaokyjo(1~y§-’0)(1~2y§0)02(1—02)
2

_ Yigjo _p2, 2

2 - L w]okyjo (1 yjo) (1 Ok)(]' 2Ok:) |

(A-8)

In the same way as for w;;,, using the above equa-
tion, we can write the following inequality

R(uigje) < 0.0625 | —ugj, | Maz | Ti,wijok |
2
u. .
+0.0241%M@w | xffwjok |
w2

+0.00602—2%°. “”0 Maz | 22wl , | .

(A-9)

It can be realized from the Egs.(A-8) and (A-9),
that when the weights have a small values, the stuck-at-
0 of a single weight relevance wj,z, or u;,;, is likely to
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produce a small relevance, that is a small deviation of
the network output.

The same calculation can be made for the relevance
of candidate weights.

A.3 In the Case of Candidate-to-Output Weight w,

In the same way as in A.l, the following equation can
be written

2

w- .
R(wery) < 0.25 | wekg | +0.0963%. (A-10)

A.4 In the Case of Input-to-Candidate Weight u;,.

In the same way as in A.2, the following equation can
be written
R(uiye) < 0.0625 | —uipe | Maz | 2} wey, |
u2
+0.0241 | “’CMax | 22 we |

2

uioc p2 2
—I—O.OOGOZTMax | g we, | (A1)

It can be realized from the Egs. (A-10) and (A-11), that
when the candidate weights have a small values, the
stuck-at-0 of a single weight relevance wcg, Or Ui, is
likely to produce a small relevance, that is a small de-
viation of the network output.
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