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Abstract. We present a relation between the Dijkgraaf-Witten invariant and

the quandle cocycle invariant. The quandle cocycle invariant of a twist-spun

knot associated with a cyclic group of odd order is related to the Dijkgraaf-

Witten invariant of the 2-fold branched covering manifold of the 3-sphere

branched along the knot. We use covering presentations of 3-manifolds to

show it.

1. Introduction

For a closed oriented 3-manifold M, the Dijkgraaf-Witten invariant [4] is given

by the state sum,

Zθ(M) =
1

|G|

∑

γ∈Hom(π1(M),G)

〈γ∗[θ], [M ]〉.

Here [θ] is the cohomology class of H3(BG, U(1)), and [M ] is the fundamental class

of M. γ∗ is the map H3(BG, U(1)) → H3(M, U(1)) induced by the classifying map

M → BG corresponding to a representation γ : π1(M) → G. Wakui [10] gave

a formulation of the Dijkgraaf-Witten invariant using triangulations, and proved

its topological invariance in a rigorous way, which depends only on a group and

the cohomology class of its 3-cocycle. Further he showed that the formulation

can be extended for 3-manifolds with boundaries, and the construction gives an

example of the topological quantum field theory. In [5], the author reconstructed

the Dijkgraaf-Witten invariant using covering presentations of 3-manifolds. By a

covering presentation of a closed oriented 3-manifold, we mean a link diagram, of

the branch set in the base space of a simple branched covering from the 3-manifold

to the 3-sphere S3, together with information of the covering.

The quandle cocycle invariant [2] is also a state sum invariant, for oriented

knots and surface-knots. They are defined with a quandle and its 2- or 3-cocycle,

respectively. The shadow cocycle invariant [3] is defined for links with quandle

3-cocycles, as an application to the quandle cocycle invariants. Extended the def-

inition to tangles, this invariant has been used for the calculations of the quandle

cocycle invariant of the twist-spun knots ([8], [1] and [6], for example).
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This paper presents relations between the Dijkgraaf-Witten invariant, the shadow

cocycle invariant and the quandle cocycle invariant. We use Abelian groups for the

Dijkgraaf-Witten invariant, and their core racks for cocycle invariants. Quandle

3-cocycles which we deal with are particular ones derived from group 3-cocycles.

Under these restrictions, the shadow cocycle invariant of a link is expressed by

a 3-manifold invariant. This 3-manifold is the 2-fold branched covering space of

S3 branched along the link. In particular, if the group is the cyclic group of odd

order, it turns out to be just the Dijkgraaf-Witten invariant up to constants. Fur-

thermore, we show that the quandle cocycle invariant of a twist-spun knot can be

computed using the shadow cocycle invariant of the knot in this case. Therefore

the Dijkgraaf-Witten invariant is related to the quandle cocycle invariant.

This paper is organized as follows. Next section is devoted to the review of

the Dijkgraaf-Witten invariant defined on covering presentations, associated with

Abelian groups. The relation between the Dijkgraaf-Witten invariant and the

shadow cocycle invariant is given in Section 3, and the relation between the quandle

and the shadow cocycle invariants will be stated in Section 4.

Acknowledgment. The author would like to thank Sadayoshi Kojima for encour-

aging her. She is also grateful for valuable suggestions to Tomotada Ohtsuki and

Shin Satoh.

2. The Dijkgraaf-Witten invariant

We review the Dijkgraaf-Witten invariant of closed oriented 3-manifolds defined

on their covering presentations, associated with Abelian groups. Refer to [5] for

the detailed argument.

Let L be an unoriented link, and DL its diagram. The symbol G denotes an

Abelian group written additively. A group coloring on DL in G is defined to be a

map

C : {arcs of DL} → G

such that at each crossing,

C(a) = 2C(b) − C(a),

where a and c are the under-arcs and b is the over-arc as illustrated in Figure 1.

a

b

c
C(c) = 2C(b) − C(a)

Figure 1. The condition of group coloring
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It is easy to verify that the number of colorings on DL in G is an invariant of

the link L. Furthermore, we have the identity that

♯{colorings on DL in G} = |G| · ♯{representations π1(M2(L)) → G},

where M2(L) is the 2-fold branched covering space of S3 branched along L ⊂ S3.

Hence it is a topological invariant of the 3-manifold. See the proof of Proposition

3.2 and 3.3 in [5], putting the label 〈12〉 on each arc of DL and adding two trivial

knots labeled 〈23〉 and 〈34〉.

A region coloring of R
2 \ DL, with respect to a coloring C on DL in G, will be

a map

S : {regions of R
2 \ D} → G

such that two colors on the adjacent regions separated by an arc a are expressed as

s and C(a) − s as shown in Figure 2. Since it is well defined around any crossing,

a region coloring is uniquely determined by the color on the unbounded region.

a

s

C(a) − s

Figure 2. The condition of region coloring

A map θ : G × G × G → A, where A is another Abelian group written multi-

plicatively, is a group 3-cocycle if, by definition, it satisfies the identity

(GC1) θ(y, z, w) · θ(x + y, z, w)−1 · θ(x, y + z, w) · θ(x, y, z + w)−1 · θ(x, y, z) = 1A

for any x, y, z, w ∈ G. We define the weight Xθ(x; C, S) at a crossing x of a diagram

DL, with a group coloring C and a region coloring S, associated with a group

3-cocycle θ by

Xθ( g

g′

s

) =θ(g,−g + g′,−s + g − g′) · θ(g′, g − g′, s − g)

·θ(−g + 2g′, g − g′,−s) · θ(g′,−g + g′, s − g′).

Here s is the color on a region with the under-arc left towards the crossing, and g,

g′ are the colors on the under- and over-arcs touching the region, respectively.

If a group 3-cocycle θ satisfies the conditions,

(GC2) θ(0, x, y) = θ(x, 0, y) = θ(x, y, 0) = 1A

and

(GC3) θ(x,−x, y) = θ(x, y,−y) = 1A,
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then the weight Xθ(x; C, S) does not depend on the choice of two regions around

x, and the expression

Iθ(L) =
∑

C

∑

S

∏

x

Xθ(x; C, S) ∈ Z[A]

gives an invariant of the link L and the 3-manifold M2(L). Here we take the product

for all the crossings of DL, the inner sum for all the region coloring, and the outer

sum for all the group coloring on DL. A large number of cohomology classes are

realized by group 3-cocycles having the properties (GC2) and (GC3), though we do

not have a nontrivial 3-cocycle with these properties in Z2 and Z3. Furthermore,

the identity

Iθ(L) = |G|3 · Zθ(M2(L))

holds for the Dijkgraaf-Witten invariant Zθ(M2(L)). Each contribution is presented

by
∏

x of D

Xθ(x, C, S) = 〈γ∗[θ], [M2(L)]〉

for a representation γ : π1(M2(L)) → G corresponding to C. It shows that the

contribution does not depend on the region colorings.

3. Shadow cocycle invariants

We first introduce the shadow cocycle invariant of links, and then show that

in particular cases, it gives a 3-maifold invariant related to the Dijkgraaf-Witten

invariant.

Let Q be a quandle. A quandle coloring on a diagram DL of an oriented link L

in Q is defined to be a map

C : {arcs of DL} → Q

such that

C(c) = C(a) ∗ C(b)

at each crossing, where b is the over-arc, a is its left, and c is its right under-arcs,

with respect to the orientation as illustrated in Figure 3. The symbol ∗ is the

operation in Q.

a

b

c
C(c) = C(a) ∗ C(b)

Figure 3. The condition of quandle coloring
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A shadow coloring of R
2 \ D, with respect to a quandle coloring C on DL in Q,

is a map

S : {regions of R
2 \ D} → Q

such that the two colors on the right and left regions of an arc a are expressed as

s and s ∗ C(a) respectively, as shown in Figure 2. It is determined uniquely by the

color on the unbounded region.

a

s

s ∗ C(a)

Figure 4. The condition of shadow coloring

Let φ : Q×Q×Q → A be a quandle 3-cocycle of Q in an Abelian group A, that

is, a map satisfying the following conditions;

(QC1) φ(x, y, z) · φ(x ∗ z, y ∗ z, w) · φ(x, z, w)

= φ(x ∗ y, z, w) · φ(x, y, w) · φ(x ∗ w, y ∗ w, z ∗ w),

(QC2) φ(x, y, y) = 1A and

(QC3) φ(x, x, y) = 1A,

for any x, y, z, w ∈ Q. Using a quandle 3-cocycle φ, we define the weight Wφ(x; C, S)

at a crossing x of a diagram DL, with a quandle coloring C and a shadow coloring

S in Q as follows in two types of crossings.

Wφ( g

g′

s

) = φ(s, g, g′),

and

Wφ( g

g′

s
) = φ(s, g, g′)−1.

The shadow cocycle invariant [3] is the state-sum

Ψφ(L) =
∑

C

∑

S

∏

x

Wφ(x; C, S) ∈ Z[A],

which is an invariant of the link L. We remark that the condition (QC3) for quandle

3-cocycles is not needed to show the invariance.

Let us consider the case that the quandle QG is the core rack of an Abelian

group G, with the operation

g ∗ g′ = 2g′ − g
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for any elements g, g′ ∈ G. For a group 3-cocycle θ : G × G × G → A, we define a

map

θ̃ : QG × QG × QG → A

by

(x, y, z) 7→ θ(2y,−2y + 2z,−x + 2y − 2z) · θ(2z, 2y − 2z, x − 2y)

·θ(−2y + 4z, 2y − 2z,−x) · θ(2z,−2y + 2z, x − 2z).

Lemma 3.1. If a group 3-cocycle θ of an Abelian group G in another Abelian group

A satisfies the conditions (GC2) and (GC3), then the map θ̃ given by θ as above is

an quandle 3-cocycle.

Proof. We show that the map θ̃ satisfies the conditions (QC1), (QC2) and (QC3).

(QC1) (LHS) · (RHS)−1

= θ̃(x, y, z) · θ̃(x ∗ z, y ∗ z, w) · θ̃(x, z, w)

· θ̃(x ∗ y, z, w)−1 · θ̃(x, y, w)−1 · θ̃(x ∗ w, y ∗ w, z ∗ w)−1

= θ̃(x, y, z) · θ̃(2z − x, 2z − y, w) · θ̃(x, z, w)

· θ̃(2y − x, z, w)−1 · θ̃(x, y, w)−1 · θ̃(2w − x, 2w − y, 2w − z)−1

= θ(2y,−2y + 2z,−x + 2y − 2z) · θ(2z, 2y − 2z, x − 2y)

· θ(−2y + 4z, 2y − 2z,−x) · θ(2z,−2y + 2z, x − 2z)

·θ(4z−2y,−4z+2y+2w, x−2y+2z−2w)·θ(2w, 4z−2y−2w,−x+2y−2z)

·θ(−4z+2y+4w, 4z−2y−2w,−2z+x)·θ(2w,−4z+2y+2w, 2z−x−2w)

·θ(2z,−2z + 2w,−x + 2z − 2w) · θ(2w, 2z − 2w, x − 2z)

· θ(−2z + 4w, 2z − 2w,−x) · θ(2w,−2z + 2w, x − 2w)

·θ(2z,−2z + 2w,−2y + x + 2z − 2w)−1 · θ(2w, 2z − 2w, 2y − x − 2z)−1

· θ(−2z + 4w, 2z − 2w,−2y + x)−1 · θ(2w,−2z + 2w, 2y − x − 2w)−1

·θ(2y,−2y + 2w,−x + 2y − 2w)−1 · θ(2w, 2y − 2w, x − 2y)−1

· θ(−2y + 4w, 2y − 2w,−x)−1 · θ(2w,−2y + 2w, x − 2w)−1

·θ(4w−2y, 2y−2z,−2w+x−2y+2z)−1·θ(4w−2z,−2y+2z,−x−2w+2y)−1

·θ(2y+4w−4z,−2y+2z,−2w+x)−1·θ(4w−2z, 2y−2z,−x−2w+2z)−1

= θ(−2y + 2w, 2z − 2w,−x + 2y − 2z)−1 · θ(2y,−2y + 2w, 2z − 2w)−1

·θ(2z − 2w, 2y − 2z, x− 2y) · θ(2w, 2z − 2w, 2y − 2z)

·θ(−2y + 2z, 2y − 2w,−x)−1 · θ(−2z + 4w,−2y + 2z, 2y − 2w)−1

·θ(−2y+4z−2w,−2z+2w, x−2w)·θ(2y−4z+4w,−2y+4z−2w,−2z+2w)

·θ(−2z + 2w, 2y − 2z,−x + 2z − 2w)−1 · θ(2w,−2z + 2w, 2y − 2z)−1

·θ(−2y +2z, 2y− 4z +2w, x− 2y +2z− 2w) · θ(2z,−2y +2z, 2y− 4z +2w)

·θ(x − 2z + 2w, 4z − 2y − 2w, 2y − 2z)−1 · θ(2w, 4z − 2y − 2w, 2y − 2z)

·θ(−x + 2y,−2y + 2w, 2y − 2z)−1 · θ(2w,−2y + 2w, 2y − 2z)

= θ(−2y + 2z,−2z + 2w, 2y − 2z) · θ(2y − 2z,−2y + 2w, 2y − 2z)

= 1A.

The conditions (GC1), (GC2) and (GC3) of θ are used repeatedly.

(QC2) θ̃(x, y, y) = θ(y, 0,−x) · θ(y, 0, x − y) · θ(y, 0,−x) · θ(y, 0, x − y) = 1A.
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(QC3) θ̃(x, x, y) = θ(2x,−2x + 2y, x − 2y) · θ(2y, 2x − 2y,−x)

· θ(−2x + 4y, 2x− 2y,−x) · θ(2y,−2x + 2y, x − 2y)

= 1A · 1A

= 1A,

since

θ(x + y,−y, w) · θ(x, y,−y + w) = 1A

by putting z to be −y in (GC1).

�

Theorem 3.2. Let G be an Abelian group, and θ̃ be the quandle 3-cocycle given

by a group 3-cocycle θ of G satisfying the conditions (GC2) and (GC3). On the

shadow cocycle invariant Ψθ̃(L) associated with θ̃, we have the identity that

Ψθ̃(L) = |G|
∑

γ∈Hom(π1(M2(L)),G)

〈(2γ)∗[θ], [M2(L)]〉.

Here M2(L) is the 2-fold branched covering space of S3 branched along the link L,

and 2γ : π1(M2(L)) → G is the mapping l 7→ 2γ(l) for each loop l in π1(M2(L)).

In particular, in the case that G = Zn of odd order n,

Ψθ̃(L) = |G|2 · Zθ(M2(L)),

where Zθ is the Dijkgraaf-Witten invariant.

Proof. Any quandle coloring C in QG can be seen as a group coloring in G with

the same mapping. For the weight Wθ̃(x; C, S) at a crossing x of D, with a quandle

coloring C and a shadow coloring S in Q, the following equalities hold for the two

types of crossing.

Wθ̃( g

g′

2g′ − g

s

2g − s 2g
′
− 2g + s

2g
′
− s

) = Xθ( 2g

2g′

4g′ − 2g

s

2g − s 2g
′
− 2g + s

2g
′
− s

)

by the definitions. On the other hand,

Wθ̃( g

g′

2g′ − g

s

2g − s 2g
′
− 2g + s

2g
′
− s

)

= θ̃(s, g, g′)−1

= θ(2g,−2g + 2g′,−s + 2g − 2g′)−1 · θ(2g′, 2g − 2g′, s − 2g)−1

· θ(−2g + 4g′, 2g − 2g′,−s)−1 · θ(2g′,−2g + 2g′, s − 2g′)−1

= θ(2g,−2g + 2g′, s − 2g′) · θ(2g,−2g + 2g′, s − 2g′)

· θ(2g′,−2g + 2g′,−s + 2g + 2g′) · θ(−2g + 4g′, 2g − 2g′, s − 2g)
7



= Xθ( 2g

2g′

4g′ − 2g

s

2g − s 2g
′
− 2g + s

2g
′
− s

).

Therefore, taking the product of the weights Wθ̃(x, C, S) for all the crossings of

D,
∏

x of D

Wθ̃(x, C, S) =
∏

x of D

Xθ(x, 2C, S).

Here the region coloring S in the right hand side is just the same mapping as the

shadow coloring S in the left hand side. The coloring 2C represent the mapping

a 7→ 2C(a) ∈ G

on each arc a of D. Recall that a group coloring corresponds to a representation

π1(M) → G. Let γ be the representation corresponding to C. Then the representa-

tion corresponding to 2C is 2γ. Hence
∏

x of D

Xθ(x, 2C, S) = 〈2γ∗[θ], [M ]〉

for each pair of a group coloring C and a region coloring S, and we obtain the

identities in the statement. �

We see that the weight Wθ̃(x, C, S) does not depend on the orientations of the

arcs by the proof. Iwakiri [6] showed it for the dihedral quandle Rp, that is the

core rack of Zp of odd prime order p, and for Mochizuki’s quandle 3-cocycles, which

gives the generators of H3(Rp, Zp) ∼= Zp.

4. Quandle cocycle invariant

The quandle cocycle invariant of r-twist-spun τrK of a knot K will be expressed

by the Dijkgraaf-Witten invariant of M2(K) in Corollary 4.3, in the case that the

group is Zn of odd order n. To show this, first we give the quandle cocycle invariant

using the shadow cocycle invariant for tangles, and then using the one for links.

The definition of the shadow cocycle invariant for tangles is similar to the one

for links in the previous section. Let T be a tangle of an oriented knot K, and

DT its diagram. Given a quandle coloring C on DT in a quandle Q, we add the

following condition (T) to the definition of shadow colorings of link diagrams.

(T) The color on the unbounded region is the same element with the color on the

initial arc, as illustrated in Figure 5.

Now the shadow coloring is uniquely determined by a quandle coloring. For a

quandle 3-cocycle φ, the shadow cocycle invariant for tangles is the state sum

Ψ∗

φ(K) =
∑

C

∏

x

Wφ(x; C) ∈ Z[A],
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and it does not depend on the choice of a tangle diagram of the knot K [1]. Here

the weight Wφ(x; C) at a crossing x is the same as in Section 3, where S is omitted.

T

g

h

gg

the axis of twists

Figure 5. The shadow coloring of a tangle diagram

The quandle cocycle invariant Φφ(τrK) of the r-twist-spun knot K can be com-

puted using a tangle diagram of K. In [1, Lemma 5.2], it is shown that

(♯) Φφ(τrK) =
∑

C

[

{

∏

x

Wφ(x; C)
}r

×
{

r−1
∏

k=0

∏

x

W
♯
φ(x; C ∗ hk)

}−1
]

.

Here we put W
♯
φ(x; C) to be φ(g, g′, h)ǫ(x) at each crossing x, where g′ is the color

on the over-arc, g is the color on its right hand side under-arc, h is the color on

the terminal arc of T, and ǫ(x) is the sign of x determined by the orientations of

arcs. The sum is taken for the colorings on T given by the colorings on a diagram

of τrK, which is obtained by twisting T in R
3.

Proposition 4.1. Let θ be a group 3-cocycle of an Abelian group G satisfying the

conditions (GC2) and (GC3), and θ̃ the quandle 3-cocycle given by θ. If r is even,

then we have the identity for the quandle cocycle invariant Φθ̃(τ
rK) and the shadow

cocycle invariant Ψ∗

θ̃
(K) for any tangle of a knot K,

Φθ̃(τ
rK) = ρr(Ψ∗

θ̃
(K)).

Here the map ρr is defined by

ρr : A → A, t 7→ tr.

Proof. It is shown in [1, Lemma 5.1] that a coloring C on DT lifts to a coloring on

a diagram of τrK, if and only if the identity

C(∗h)r = C

holds, where h is the color on the terminal arc of T. In our case any coloring on T

in QG lifts to a coloring on the diagram since

(g ∗ h) ∗ h = g
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for any g and h ∈ QG, and r is even.

On the latter term in the sum in (♯), we have

W
♯

θ̃
(x; C ∗ h) = W

♯

θ̃
(x; C)−1

because θ̃(g ∗ h, g′ ∗ h, h) = θ̃(g, g′, h)−1 for any g, g′ and h ∈ G. Hence pairs of two

weights in the product cancel with each other, and this completes the proof. �

We remark that if r is odd and G is Zn of odd order n, then

Φφ(τrK) = n,

for any quandle 3-cocycle φ, since any coloring on the diagram of τrK in QG is

trivial.

Proposition 4.2. Let θ be a group 3-cocycle of Zn of odd order n, satisfying the

conditions (GC2) and (GC3), and θ̃ the quandle 3-cocycle given by θ. We have

the identity for the shadow cocycle invariants Ψθ̃(L) for links and Ψ∗

θ̃
(L) for their

tangles,

Ψθ̃(L) = |G|Ψ∗

θ̃
(L).

Proof. For any coloring in Zn on a diagram DT of a tangle T, the color on its

terminal arc is equal to the one on the initial arc. So the set of colorings on DT

coincides with the set of colorings on DL of the link L presented by T.

We fixed the shadow coloring of DT for a quandle coloring C in the condition

(T). However, the contribution
∏

x Wθ̃(x, C) for all the crossings of DT does not

depend on the shadow coloring, as stated in Section 2, translated in the terms

of the Dijkgraaf-Witten invariant. We prove it in a rigorous way here. Prepare

two shadow colorings S1 and S2 of DT , associated with the same quandle coloring

C. Let the colors around a crossing x as depicted in Figure 6. In this figure the

orientations on the arcs are arbitrarily given, and in each region the above (resp.

below) element is of S1 (resp. S2). Then we have

Wθ̃(x, C, S1)

Wθ̃(x, C, S2)
=θ̃(s, g, g′) · θ̃(s, g, g′)−1

=θ(2g, s − 2g, t − s) · θ(2g,−s, s− t)−1

·θ(2g′,−s, s − t) · θ(2g′, s − 2g′, t − s)−1

·θ(−2g + 4g′, s − 2g′, t − s) · θ(−2g + 4g′,−s + 2g − 2g′, s − t)−1

·θ(2g′,−s + 2g − 2g′, s − t) · θ(2g′, s − 2g, t− s)−1,

by the group cocycle conditions. Put two terms on each end of the arcs cut around

this crossing as illustrated in Figure 6. Then we can see that the terms on the ends

coming from its adjacent crossings will cancel with each other. Hence, taking the

products for all the crossings of DT , we have
∏

x of D

Wθ̃(x, C, S1) =
∏

x of D

Wθ̃(x, C, S2).
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g

g′

2g′ − g

s

t

2g-s

2g-t

2g’-2g+s

2g’-2g+t

2g’-s

2g’-t

θ(2g′,−s, s − t) · θ(2g′, s − 2g′, t − s)−1

θ(2g, s − 2g, t − s)

·θ(2g,−s, s − t)−1

θ(2g′, s − 2g, t − s)−1
· θ(2g′,−s + 2g − 2g′, s − t)

θ(−2g + 4g′,−s + 2g − 2g′, s − t)−1

·θ(−2g + 4g′, s − 2g′, t − s)
x

θ(2g′,−s, s − t)−1
· θ(2g′, s − 2g′, t − s)

Figure 6. Two shadow colorings S1 (boxed above in the regions)

and S2 (boxed below) associated with the same group coloring

�

Proposition 4.1 is shown in [1] and Proposition 4.2 is shown in [9], both for

the dihedral quandle Rp of odd prime order p, and for the Mochizuki’s quandle

3-cocycles.

Corollary 4.3. Let θ be a group 3-cocycle of Zn of odd order n, satisfying the

conditions (GC2) and (GC3), and θ̃ the quandle 3-cocycle given by θ. If r is even,

then we have the identity between the quandle cocycle invariant Φθ̃(τ
rK) of the

r-twist-spun τrK of a knot K, and the Dijkgraaf-Witten invariant Zθ(M2(K)) of

the 2-fold branched covering space M2(K) branched along K,

Φθ̃(τ
rK) = |G|ρr(Zθ(M2(K))).

The map ρr is the one defined in Proposition 4.1.

Proof. By Propositions 4.1 and 4.2, it holds that

Φθ̃(τ
rK) =

1

|G|
ρr(Ψθ̃(K)).

Then Theorem 3.2 leads the identity. �

References

[1] S. Asami and S. Satoh, An infinite family of non-invertible surfaces in 4-space, in prepartion.

[2] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, State-sum invariants of knotted

curves and surfaces from quandle cohomology, Electron. Res. Announc. Amer. Math. Soc. 5

(1999) 146–156.

[3] J. S. Carter, S. Kamada and M. Saito, Geometric interpretations of quandle homology and

cocycle knot invariants, J. Knot Theory Ramifications 10 (2001) 345–386.

11



[4] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Comm. Math.

Phys. 129 (1990), 393–429.

[5] E. Hatakenaka, Invariants of 3-manifolds derived from covering presentations, preprint.

[6] M. Iwakiri, Calculation of dihedral quandle cocyce invariants of twist spun 2-bridge knots, J.

Knot Theory Ramifications, 14 (2005), 217–229.

[7] T. Mochizuki, Some calculations of cohomology groups of finite Alexander quandles, J. Pure

Appl. Alg., 179 (2003), 287–330.

[8] S. Satoh, Surface diagrams of twist-spun knots, J. Knot Theory Ramifications, 11 (2002),

413–430.

[9] S. Satoh, A note on the shadow cocycle invariant of a knot with a base point, preprint.

[10] M. Wakui, On Dijkgraaf-Witten invariant for 3-manifolds, Osaka J. Math. 29 (1992), 675–696.

[11] E. C. Zeeman, Twisting Spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495.

Department of Mathematics, Tokyo Institute of Technology, 2-12-1, O-okayama,

Meguro-ku, Tokyo, 152-8550, Japan

E-mail address: hataken0@is.titech.ac.jp

12


